Nanobubbles for Precision Oncology
DOI:
https://doi.org/10.56951/gsz6t860Kata Kunci:
nanobubbles, penghantaran obat berbantuan ultrasound , gasotransmitters, hipoksia tumor, hormesis, onkologi presisiAbstrak
Nanobubbles (NBs) merupakan kelas unik dari zat pembawa berukuran sub-200 nm yang mengintegrasikan kemampuan penetrasi jaringan dalam dengan fungsi responsif terhadap ultrasound (US), sehingga menawarkan peluang untuk pencitraan, oksigenasi, dan penghantaran terapeutik secara simultan pada tumor padat. Tinjauan ini menyintesis prinsipprinsip fisikokimia yang mengatur stabilitas NB dengan pertimbangan desain translasional, termasuk muatan interfasial, kandungan lipid bebas, jarak antar gelembung, dan zeta (ζ)-potensial sebagai determinan penyerapan dan sitotoksisitas. Penekanan khusus diberikan pada muatan berbasis gas: nanobubbles oksigen untuk mengatasi hipoksia tumor serta molekul pelepas karbon monoksida (CO-RMs), nitrogen monoksida (NO), dan hidrogen sulfida (H₂S) untuk modulasi redoks–imunometabolik dalam rentang dosis hormetik. Data praklinis menunjukkan bahwa nanobubbles oksigen meningkatkan respons radioterapi dan kemoterapi dengan membalikkan resistansi akibat hipoksia, sementara donor CO, NO, dan H₂S—yang diberikan dalam rentang dosis bifasik yang sensitif—memungkinkan imunomodulasi dan rekayasa ulang mikro lingkungan tumor. Kami juga merangkum bukti tingkat kasus (misalnya nanobubbles IR780–docetaxel pada kanker pankreas) menjadi aturan desain praktis dan membahas tuas rekayasa seperti komposisi selubung, kimia pengikatan silang, serta parameterisasi akustik. Akhirnya, tinjauan ini menguraikan peta jalan translasional yang mencakup manufaktur skala besar, dosimetri berpemandu pencitraan, dan strategi klinis fase awal. Secara kolektif, sistem berbasis nanobubble yang diperkaya gas dan dipicu ultrasound (US) merepresentasikan platform presisi yang sedang berkembang dengan potensi untuk bertransisi dari prototipe eksperimental menuju evaluasi klinis yang terkontrol dalam onkologi.
Unduhan
Referensi
1. Zaluski M, Cichoń K, Mróz M, Janus A, Jarm T, Nowicki A, Yulianti M. Nanobubble-mediated oxygenation—A promising avenue for improved tumor therapy outcomes. Nanomaterials (Basel). 2023;13:3060. doi:10.3390/nano13233060.
2. Terlikowska KM, Dobrzycka B, Terlikowski SJ. Modifications of nanobubble therapy for cancer treatment. Int J Mol Sci. 2024;25(13):7292. doi:10.3390/ijms25137292.
3. Yang H, Zhao P, Zhou Y, Li Q, Cai W, Zhao Z, et al. Preparation of multifunctional nanobubbles and their application in bimodal imaging and targeted combination therapy of early pancreatic cancer. Sci Rep. 2021;11(1):6254. doi: 10.1038/s41598-021-82602-9.
4. Wang Y, Wang T. Preparation method and application of nanobubbles: a review. Coatings (Basel). 2023;13:1510. doi:10.3390/coatings13091510.
5. Werroug A, Hasni H, Senhaji Y, Elsqalli H, Kaddiri M, Kheiri A. Review of micro- and nanobubble technologies: advancements in theory and applications and perspectives on adsorption cooling and desalination systems. Energies. 2023;16:8078. doi:10.3390/en16248078.
6. Strachan J, Dyett B, Nasa Z, Valéry C, Conn C. Toxicity and cellular uptake of lipid nanoparticles of different structure and composition. J Colloid Interface Sci. 2020;576:241–51. doi: 10.1016/j.jcis.2020.05.002.
7. Agarwal A, Ng WJ, Liu Y. Effects of nanobubbles on the physicochemical properties of water. Chem Eng Sci. 2013;98:66–77. doi:10.1016/j.ces.2013.02.004.
8. Zhang Y, Zhu X, Wood JA, Lohse D. Threshold current density for diffusion-controlled stability of electrolyti surface nanobubbles. Proc Natl Acad Sci U S A. 2024;121(21):e2321958121. doi:10.1073/pnas.2321958121.
9. Cui Y, Su C, Chi X, Zhu X, Zhao C, Ge J, Li C, Wang X. Gasotransmitters. Int J Mol Sci. 2023;24:12480. doi:10.3390/ijms241512480.
10. Sutrisno T, Parmar RS, Agustina D, Hasip A, Pardede M. The potentials of carbon monoxide-releasing molecules in cancer treatment. Curr Pharm Des. 2021;27(46):N/A. doi:10.2174/1381612826666211207154059.
11. Jadhav AJ, Barigou M. Bulk nanobubbles or not nanobubbles: That is the question. Langmuir. 2020;36(7):1699–708. doi:10.1021/acs.langmuir.9b03532.
12. Gkeka P, Angelikopoulos P, Sarkisov L, Cournia Z. Membrane partitioning of anionic, ligand-coated nanoparticles is accompanied by ligand snorkeling, local disordering, and cholesterol depletion. PLoS Comput Biol. 2014;10(10):e1003917. doi:10.1371/journal.pcbi.1003917.
13. Batchelor DVB, Armistead FJ, Ingram N, Peyman SA, McLaughlan JR, Coletta PL, et al. The influence of nanobubble size and stability on ultrasound enhanced drug delivery. Langmuir. 2022;38(45):13943–54. doi:10.1021/acs.langmuir.2c02303.
14. Tian J, Yang F, Cui H, Zhou Y, Ruan X, Gu N. A novel approach to making the gas-filled liposome real: based on the interaction of lipid with free nanobubble within the solution. ACS Appl Mater Interfaces. 2015;7(48):26579–84. doi:10.1021/acsami.5b07778.
15. Prabhakar A, Banerjee R. Nanobubble liposome complexes for diagnostic imaging and ultrasoundtriggered drug delivery in cancers: a theranostic approach. ACS Omega. 2019;4(13):15567–80. doi:10.1021/acsomega.9b01924.
16. Tian J, Wan S, Tian J, Liu L, Xia J, Hu Y, et al. Anti-HER2 scFv-nCytc-modified lipid-encapsulated oxygen nanobubbles prepared with bulk nanobubble water for inducing apoptosis and improving photodynamic therapy. Small. 2023;19:e2206091. doi:10.1002/smll.202206091.
17. Bismuth M, Eck M, Ilovitsh T. Nanobubble-mediated cancer cell sonoporation using low-frequency ultrasound. Nanoscale. 2023. doi:10.1039/d3nr03226d.
18. Jin J, Yang F, Li B, Liu D, Wu L, Li Y, et al. Temperature-regulated self-assembly of lipids at free bubbles interface: a green and simple method to prepare micro/nano bubbles. Nano Res. 2020;13(4):999–1007. doi:10.1007/s12274-020-2732-x.
19. Gagino M, Katsikis G, Olcum S, Virot L, Cochet M, Thuaire A, et al. Suspended nanochannel resonator arrays with piezoresistive sensors for high-throughput weighing of nanoparticles in solution. ACS Sens. 2020;5(8):1230–38. doi: 10.1021/acssensors.0c00394.
20. Song R, Peng S, Lin Q, Luo M, Chung H, Zhang Y, Yao S. pH-Responsive Oxygen Nanobubbles for Spontaneous Oxygen Delivery in Hypoxic Tumors. Langmuir. 2019. doi: 10.1021/acs.langmuir.8b03650.
21. Bhandari P, Cui Y, Elzey B, Goergen C, Long C, Irudayaraj J. Oxygen nanobubbles revert hypoxia by methylation programming. Sci Rep. 2017. doi: 10.1038/s41598-017-08988-7.
22. Liu J, Shi M, Zhao H, Bai X, Lin Q, Guan X, et al. Ultrasound-activated nano-oxygen sensitizer for sonodynamic–radiotherapy of esophageal cancer. Nanoscale Adv. 2025;7(8):2209–21. doi: 10.1039/d5na00042d.
23. Kumari B, Agarwal K, Negi D, Niveria K, Singh Y, Verma AK, et al. Oxygen nanobubbles halt tumor aggression and metastasis by inhibiting hypoxia-induced epithelial-to-mesenchymal transition in lung and mammary adenocarcinoma. ACS Appl Nano Mater. 2024;7 (21):25198–211.doi: 10.1021/acsanm.4c05295.
24. Morsy M, Ibrahim Y, Hafez S, Zenhom N, Nair A, Venugopala K, et al. Paeonol attenuates hepatic ischemia/reperfusion injury by modulating the Nrf2/HO-1 and TLR4/MYD88/NF-κB signaling pathways. Antioxidants. 2022;11(9):1687. doi: 10.3390/antiox11091687.
25. Uçar B, Ucar G, Saha S, Buttari B, Profumo E, Saso L. Pharmacological protection against ischemiareperfusion injury by regulating the Nrf2-Keap1-ARE signaling pathway. Antioxidants. 2021;10(6):823. doi: 10.3390/antiox10060823.
26. Ning X, Zhu X, Wang Y, Yang J. Recent advances in carbon monoxide-releasing nanomaterials. Bioact Mater. 2024;37:30–50. doi: 10.1016/j.bioactmat.2024.03.001.
27. Pathak V, Roemhild K, Schipper S, Groß-Weege N, Nolte T, Ruetten S, et al. Theranostic triggerresponsive carbon monoxide-generating microbubbles. Small. 2022;18(18):e2200924. doi: 10.1002/smll.202200924.
28. Koczera P, Thomas F, Rama E, Thoröe-Boveleth S, Kiessling F, Lammers T, et al. Microbubbleencapsulated cobalt nitrato complexes for ultrasound‐triggerable nitric oxide delivery. ChemMedChem. 2024;19(9):e202400232. doi: 10.1002/cmdc.202400232.
29. Ji C, Si J, Xu Y, Zhang W, Yang Y, He X, et al. Mitochondria-targeted and ultrasound-responsive nanoparticles for co-delivery of oxygen and nitric oxide to reverse immunosuppression and enhance sonodynamic therapy for immune activation. Theranostics. 2021;11(17):8587–604. doi: 10.7150/thno.62572.
30. Knowles HJ, Vasilyeva A, Sheth M, Pattinson O, May J, Rumney R, et al. Use of oxygen-loaded nanobubbles to improve tissue oxygenation: bone-relevant mechanisms of action and effects on osteoclast differentiation. Biomaterials. 2023;305:122448. doi: 10.1016/j.biomaterials.2023.122448.
31. Skaperda Z, Tekos F, Vardakas P, Nepka C, Kouretas D. Reconceptualization of hormetic responses in the frame of redox toxicology. Int J Mol Sci. 2021;23(1):49 doi: 10.3390/ijms23010049.
32. Schirrmacher V. Less Can Be More: The hormesis theory of stress adaptation in the global biosphere. Biomedicines. 2021;9(3):293. doi: 10.3390/biomedicines9030293.
33. Iavicoli I, Leso V, Fontana L, Calabrese E. Nanoparticle Exposure and Hormetic Dose–Responses: an Update. Int J Mol Sci. 2018;19(3):805. doi: 10.3390/ijms19030805.
34. Agathokleous E, Feng Z, Iavicoli I, Calabrese E. The two faces of nanomaterials: a quantification of hormesis in algae and plants. Environ Int. 2019;131:105044. doi: 10.1016/j.envint.2019.105044.
35. Thakur SS, Ward M, Popat A, Flemming NB, Parat MO, Barnett NL, et al. Stably engineered nanobubbles and ultrasound—An effective platform for enhanced macromolecular delivery to representative cells of the retina. PLoS ONE. 2017;12(5):e0178305. doi: 10.1371/journal.pone.0178305.
36. Sharma D, Leong KX, Palhares D, Czarnota G. Radiation combined with ultrasound and microbubbles: a potential novel strategy for cancer treatment. Z Med Phys. 2023;33(3):407–26. doi: 10.1016/j. zemedi.2023.04.007.
37. Chen L, Nittayacharn P, Exner AA. Progress and potential of nanobubbles for ultrasound-mediated drug delivery. Expert Opin Drug Deliv. 2025;22(7):1007–30. doi: 10.1080/17425247.2025.2505044.
38. Zhang Y, Wu W-H, Wang J-Y, Zhai W. The effect of stable cavitation on dendrite growth within ultrasonic field. Acta Physica Sinica. 2022. doi:10.7498/aps.72.20221101.
39. Wu W, Yang P, Zhai W, Wei B. Oscillation and Migration of Bubbles within Ultrasonic Field. Chin Phys Lett. 2019;36. doi:10.1088/0256-307X/36/8/084302.
40. Zhao X, Wright A, Goertz D. An optical and acoustic investigation of microbubble cavitation in small channels under therapeutic ultrasound conditions. Ultrason Sonochem. 2023;93. doi:10.1016/j. ultsonch.2023.106291.
41. Pellow C, Sojahrood AJ, Zhao X, Kolios M, Exner A, Goertz DE. Synchronous intravital imaging and cavitation monitoring of antivascular focused ultrasound in tumor microvasculature. ACS Nano. 2023;18(1):410–27 doi:10.1021/acsnano.3c07711.
42. Shinar H, Ilovitsh T. Volumetric passive acoustic mapping and cavitation detection of nanobubbles under low-frequency insonation. ACS Materials Au. 2024;5:159–69. doi:10.1021/acsmaterialsau.4c00064.
43. Huang G, Sun C, Wei X, Tang S, Wu S, He W, et al. Ultrasound-mediated plasmid delivery by stable oscillation of linear array microbubbles in microfluidic channels. IEEE Sens J. 2025;25:144–51. doi:10.1109/jsen.2024.3499318.
44. Gatica T, Wout EV, Haqshenas R. Classifying acoustic cavitation with machine learning trained on multiple physical models. Physic of Fluids 2025;37:037166. doi:10.1063/5.0255579.
45. Schmid R, Mørch ÝA, Stenstad PM, Hansen R, Berg S, Hansen YH, et al. Gas bubbles stabilized by multifunctional nanoparticles for ultrasound-mediated Drug-Delivery. Poster session presented at: Control Release Society: July, 21–24, 2013; USA.
46. Khan MS, Hwang J, Lee K, Choi Y, Jang J, Kwon Y, et al. Surface composition and preparation method for oxygen nanobubbles for drug delivery and ultrasound imaging applications. Nanomaterials. 2019;9(1):48. doi:10.3390/nano9010048.
47. Bidgoli MM, Hayaty M. Fabrication and characterization of nanoencapsulated epoxy resin/crosslinked PMMA shells with in situ polymerization via phase inversion emulsion (PIE) method. J Appl Polym Sci. 2020;137:48793. doi:10.1002/app.48793.
48. de Vries WC, Kudruk S, Grill D, Niehues M, Matos AL, Wissing M, et al. Polymer nanocontainers: controlled cellular delivery of amphiphilic cargo by redox‐responsive nanocontainers. Adv Sci. 2019;6(24):1970146. doi:10.1002/advs.201970146.
49. Arif M. Core-shell systems of crosslinked organic polymers: a critical review. Eur Polym J. 2024;206:112803. doi:10.1016/j.eurpolymj.2024.112803.
50. Chen T, Miao W, Yang Z, Yang F. From nanovesicles to nanobubbles based on repeated compression method. Langmuir. 2023;39(47):16740–49. doi:10.1021/acs.langmuir.3c01817.
51. Khan MS, Hwang J, Lee K, Choi Y, Kim K, Koo H-J, et al . Oxygen-carrying micro/nanobubbles: composition, synthesis techniques and potential prospects in photo-triggered theranostics. Molecules. 2018; 23(9):2210. https://doi.org/10.3390/molecules23092210.
52. Baroni S, Argenziano M, La Cava F, Soster M, Garello F, Lembo D, et al. Hard-shelled glycol chitosan nanoparticles for dual MRI/US detection of drug delivery/release: a proof-of-concept study. Nanomaterials. 2023;13(15):2227. doi:10.3390/nano13152227.
53. Khan MS, Kim JS, Hwang J, Choi Y, Lee K, Kwon Y, et al. Effective delivery of mycophenolic acid by oxygen nanobubbles for modulating immunosuppression. Theranostics. 2020;10(9):3892–904. doi:10.7150/thno.41850.
54. Sun H, Erdman W, Yuan Y, Mohamed MA, Xie R, Wang Y, et al. Crosslinked polymer nanocapsules for therapeutic, diagnostic, and theranostic applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020;12(6):e1653. doi:10.1002/wnan.1653.
55. Domenici F, Brasili F, Oddo L, Cerroni B, Bedini A, Bordi F, et al. Long-term physical evolution of an elastomeric ultrasound contrast microbubble. J Colloid Interface Sci. 2019;540:185–96. doi:10.1016/j. jcis.2018.12.110.
56. Yang H, Zhao P, Zhou Y, Li Q, Cai W, Zhao Z, et al. Preparation of multifunctional nanobubbles and their application in bimodal imaging and targeted combination therapy of early pancreatic cancer. Sci Rep. 2021;11(1):6254. doi:10.1038/s41598-021-82602-9.
57. Liu M, Zhang P, Deng L, Guo D, Tan M, Huang J, et al. IR780-based light-responsive nanocomplexes combining phase transition for enhancing multimodal imaging-guided photothermal therapy. Biomater Sci. 2019;7(3):1132–46. doi:10.1039/c8bm01524d.
58. Yang Q, Xiao Y, Yin Y, Li G, Peng J. Erythrocyte membrane-camouflaged IR780 and DTX coloading polymeric nanoparticles for imaging-guided cancer photo-chemo combination therapy. Mol Pharm. 2019;16(7):3208–20. doi:10.1021/acs.molpharmaceut.9b00413.
59. Liu X, Li R, Zhou Y, Lv W, Liu S, Zhao Q, et al. An all-in-one nanoplatform with near-infrared light promoted on-demand oxygen release and deep intratumoral penetration for synergistic photothermal/photodynamic therapy. J Colloid Interface Sci. 2021;608:1543–52. doi:10.1016/j.jcis.2021.10.082.
60. Mo Z, Qiu M, Zhao K, Hu H, Xu Q, Cao J, et al. Multifunctional phototheranostic nanoplatform based on polydopamine-manganese dioxide-IR780 iodide for effective MRI-guided synergistic photodynamic/photothermal therapy. J Colloid Interface Sci. 2021;611:193–204. doi:10.1016/j.jcis.2021.12.071.
61. Liu X, Tian K, Zhang J, Zhao M, Liu S, Zhao Q, et al. Smart NIR-light-mediated nanotherapeutic agents for enhancing tumor accumulation and overcoming hypoxia in synergistic cancer therapy. ACS Appl Bio Mater. 2019;2(3):1225–32. doi:10.1021/ACSABM.8B00790.
62. Hu H, Yao S, Xu Q, Cai X, Mo Z, Yang Z, et al. Protein-coated cobalt oxide-hydroxide nanospheres deliver photosensitizer IR780 iodide for near-infrared light-triggered photodynamic/photothermal/chemodynamic therapy against colon cancer. J Mater Chem B. 2023;11(38):9185–200. doi:10.1039/d3tb01657a.
63. Montazeri SM, Kalogerakis N, Kolliopoulos G. Effect of chemical species and temperature on the stability of air nanobubbles. Sci Rep. 2023 ;13(1):16716. doi:10.1038/s41598-023-43803-6.
64. Hewage SA, Kewalramani JA, Meegoda JN. Stability of nanobubbles in different salts solutions. Colloids Surf A. 2021;609:125669. doi:10.1016/j.colsurfa.2020.125669.
65. Li M, Ma X, Eisener J, Pfeiffer P, Ohl CD, Sun C . How bulk nanobubbles are stable over a wide range of temperatures. J Colloid Interface Sci. 2021;596:184–98. doi:10.1016/j.jcis.2021.03.064.
66. Zhang H, Guo Z, Zhang X. Surface enrichment of ions leads to the stability of bulk nanobubbles. Soft Matter. 2020; ;16(23):5470–77. doi:10.1039/d0sm00116c.
67. Bui TLT, Nguyen DC, Han M. Average size and zeta potential of nanobubbles in different reagent solutions. J Nanopart Res. 2019;21:173. doi:10.1007/s11051-019-4618-y.
68. Delforce L, Tcholakova S. Role of temperature and urea for surface and foam properties of nonionic surfactants with dodecyl alkyl chain. Colloids Surf A Physicochem Eng Asp. 2024;688:133844. doi: 10.1016/j.colsurfa.2024.133844.
69. Jin F, Li J, Ye X, Wu C. Effects of pH and ionic strength on the stability of nanobubbles in aqueous α-cyclodextrin solutions. J Phys Chem B. 2007;111:11745–9. doi:10.1021/JP074260F.
70. Zhao J, Wu D, Zhang H, Liu J, Zhang S, Zhang X. Comparison of physicochemical properties between CO₂ and CH₄ nanobubbles produced by gas hydrate decomposition. J Mol Liq. 2024;403:124893. doi:10.1016/j.molliq.2024.124893.
71. Fitzgerald E, Kumar A, Poulose S, Coey J. Interaction and stability of nanobubbles and prenucleation calcium clusters during ultrasonic treatment of hard water. ACS Omega. 2024;9:2547–58. doi:10.1021/acsomega.3c07305.
72. Das P. Effect of temperature on zeta potential of functionalized gold nanorod. Microfluid Nanofluid. 2017;21:95. doi:10.1007/s10404-017-1931-6.
73. Zhang Y, Zheng X, Zhang Y, Lu S, Zhang J, Li M. Characteristics of air nanobubbles in circulating cooling water and their corrosion inhibition mechanism on stainless steel: The role of temperature. Langmuir. 2025;41(16):10705–14. doi:10.1021/acs.langmuir.5c01079.
74. Lee J, Lee K, Wang C, Ha D, Kim GH, Park J, et al. Combined effects of zeta-potential and temperature of nanopores on diffusioosmotic ion transport. Anal Chem. 2021; 93(42):14169–77. doi:10.1021/acs.analchem.1c02814.
75. Ma X, Li M, Pfeiffer P, Eisener J, Ohl CD, Sun C. Ion adsorption stabilizes bulk nanobubbles. J Colloid Interface Sci. 2021;606:1380–94. doi:10.1016/j.jcis.2021.08.101.
76. Hewage SA, Meegoda JN. Stability of nanobubbles. Environ Eng Sci. 201;35(11):1151–272. doi:10.1089/ees.2018.0203.
77. Cho SH, Kim JY, Chun JH, Kim JD. Ultrasonic formation of nanobubbles and their zeta-potentials in aqueous electrolyte and surfactant solutions. Colloids Surf A. 2005;269:28–34. doi:10.1016/J. COLSURFA.2005.06.063.
78. Chen C, Perera R, Kolios MC, Wijkstra H, Mischi M, Exner AA, et al. Pharmacokinetic modeling of PSMA targeted nanobubbles for quantification of extravasation and binding in mice models of prostate cancer. Med Phys. 2022;49(10):6547–59. doi:10.1002/mp.15962.
79. Nittayacharn P, Abenojar E, Cooley MB, Berg FM, Counil C, Sojahrood AJ, et al. Efficient ultrasoundmediated drug delivery to orthotopic liver tumors—Direct comparison of doxorubicin-loaded nanobubbles and microbubbles. J Control Release. 2024;367:135–47. doi:10.1016/j.jconrel.2024.01.028.
80. Huang B, Yang L, Yu WH, Li Y, Li L, Gu N. Advances of therapeutic microbubbles and nanobubbles. Nat Sci Open. 2023; 2(5): 20220062. doi:10.1360/nso/20220062.
81. Vlatakis S, Zhang W, Thomas S, Cressey P, Moldovan A, Metzger H, et al. Effect of phase-change nanodroplets and ultrasound on blood-brain barrier permeability in vitro. Pharmaceutics. 2023;16(1):51. doi: 10.3390/pharmaceutics16010051.
82. Counil C, Abenojar E, Perera R, Exner A. Extrusion: A new method for rapid formulation of high-yield, monodisperse nanobubbles. Small. 2022;18(24):e2200810. doi:10.1002/smll.202200810.
83. Gnyawali V, Wang JZ, Wang Y, Fishbein G, So LH, De Leon AC, et al. Individual nanobubbles detection using acoustic based flow cytometry. Proc SPIE 10878, Photon Plus Ultrasound: Imaging and Sensing 2019;10878:108782E. doi:10.1117/12.2510783.
84. Hansen HH, Cha H, Ouyang L, Zhang J, Jin B, Stratton H, et al. Nanobubble technologies: Applications in therapy from molecular to cellular level. Biotechnol Adv. 2022;63:108091. doi:10.1016/j. biotechadv.2022.108091.
85. Dwivedi P, Kiran S, Han S, Dwivedi M, Khatik R, Fan R, et al. Magnetic targeting and ultrasound activation of liposome-microbubble conjugate for enhanced delivery of anticancer therapies. ACS Appl Mater Interfaces. 2020 ;12(21):23737-51. doi:10.1021/acsami.0c05308.
86. Hysi E, Fadhel MN, Wang Y, Sebastian JA, Giles A, Czarnota GJ, et al. Photoacoustic-derived biomarkers of nanobubble-mediated cancer treatment response. Proc SPIE Photon Plus Ultrasound: Imaging and Sensing. 2021; 116422M. doi:10.1117/12.2577090.
87. Wang Y, Hysi E, Moore M, De Leon AC, Abenojar E, Exner AA, et al. Targeted Sudan Black nanobubbles as photoacoustic contrast agents for breast cancer imaging. Proc SPIE 10878, Photons Plus Ultrasound: Imaging and Sensing 2019; 108782F. doi:10.1117/12.2510876.
Unduhan
Terbitan
Bagian
Diterbitkan
Unduhan
Lisensi
Hak Cipta (c) 2026 Dito Anurogo, Khadijah Zumratul Rabbani, Pudjo Dwi Laksono Dwi Laksono

Artikel ini berlisensi Creative Commons Attribution-NonCommercial 4.0 International License.