Melawan Penurunan Kognitif pada Otak yang Menua Lewat Pemulihan Fungsi Mitokondria

Penulis

  • Raymond R. Tjandrawinata Molecular Pharmacologist Dexa Group dan Unika Atma Jaya

DOI:

https://doi.org/10.56951/wdpk3k28

Kata Kunci:

mitokondria, penuaan, fungsi kognitif

Abstrak

Mitokondria, pabrik energi sel, memainkan peran penting dalam menjaga fungsi neuron dan sirkuit melalui produksi adenosine triphosphate (ATP) melalui fosforilasi oksidatif (oxidative phosphorylation/OXPHOS). Dalam otak mamalia yang menua, efisiensi OXPHOS menurun, menyebabkan disfungsi mitokondria, stres oksidatif, dan penurunan kognitif. Penelitian terbaru menyoroti hubungan antara eksitasi neuron dan transkripsi gen mitokondria, menunjukkan bahwa keterkaitan ini berkurang seiring bertambahnya usia. Studi lain memperkuat temuan ini dan menawarkan perspektif yang lebih luas tentang mekanisme yang mendasari disfungsi mitokondria pada penuaan serta strategi terapeutik potensial. Ulasan ini mengkaji penelitian-penelitian mutakhir untuk memberikan pemahaman komprehensif tentang penurunan mitokondria terkait usia dan dampaknya terhadap fungsi kognitif.

Referensi

1. Nunnari J, Suomalainen A. Mitochondria: in sickness and in health. Cell. 2012;148(6):1145-59.

2. Mattson MP, Moehl K, Ghena RL, Schmaedick M, Cheng A. Intermittent metabolic switching, neuroplasticity, and brain aging. Nat Rev Neurosci. 2023;24(1):1-17.

3. Sun N, Youle RJ, Finkel T. The mitochondrial basis of aging. Mol Cell. 2021;81(3):403-15.

4. Hood DA, Memme JM, Oliveira AN, Triolo M. Maintenance of skeletal muscle mitochondria in health, exercise, and aging. Annu Rev Physiol. 2018;81:19-41.

5. Youle RJ, van der Bliek AM. Mitochondrial fission, fusion, and stress. Science. 2012;337(6098):1062-5.

6. Ma H, Khaled HG, Wang X, Mandelberg NJ, Cohen SM, He X, et al. Excitation-transcription coupling, neuronal gene expression and synaptic plasticity. Nat Rev Neurosci. 2023;24(11):672-92.

7. Swerdlow RH. Mitochondria and mitochondrial cascades in Alzheimer’s disease. J Alzheimers Dis. 2020;62(3):1403-16.

8. Pickles S, Vigié P, Youle RJ. Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr Biol. 2018;28(4):R170-85.

9. Palikaras K, Lionaki E, Tavernarakis N. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat Cell Biol. 2018;20(9):1013-22.

10. Murphy MP, Hartley RC. Mitochondria as a therapeutic target for common pathologies. Nat Rev Drug Discov. 2018;17(12):865-86.

11. Angelova PR, Abramov AY. Role of mitochondrial ROS in the brain: implications for neurodegenerative diseases. FEBS Lett. 2018;592(5):692-702.

12. Amorim JA, Coppotelli G, Rolo AP, Palmeira CM, Ross JM, Sinclair DA. Mitochondrial and metabolic dysfunction in ageing and age-related diseases. Nat Rev Endocrinol. 2022;18(4):243-58.

13. Grel H, Woznica D, Ratajczak K, Kalwarczyk E, Anchimowicz J, Switlik W, et al. Mitochondrial dynamics in neurodegenerative diseases: unraveling the role of fusion and fission processes. Int J Mol Sci. 2023;24(17):13033.

14. Sobhon P, Savedvanich G, Weerakiet S. Oxidative stress, inflammation, dysfunctional redox homeostasis, and autophagy cause age-associated diseases. Explor Med. 2023;4:45-70.

15. Wang S, Long H, Hou L, Feng B, Ma Z, Wu Y, et al. The mitophagy pathway and its implications in human diseases. Signal Transduct Target Ther. 2023;8:304.

16. Jadiya P, Garbincius JF, Elrod JW. Reappraisal of metabolic dysfunction in neurodegeneration: focus on mitochondrial function and calcium signaling. Acta Neuropathol Commun. 2021;9(1):124.

17. Kolotyeva NA, Groshkov AA, Rozanova NA, Berdnikov AK, Novikova SV, Komleva YK, et al. Pathobiochemistry of aging and neurodegeneration: deregulation of NAD+ metabolism in brain cells. Biomolecules. 2024;14(12):1556.

18. Martínez-Reyes I, Chandel NS. Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun. 2020;11(1):102.

19. Gao L, Peng L, Wang J, Zhang JH, Xia Y. Mitochondrial stress: a key role of neuroinflammation in stroke. J Neuroinflammation. 2024;21(1):44.

20. Klemmensen MM, Borrowman SH, Pearce C, Pyles B, Chandra B. Mitochondrial dysfunction in neurodegenerative disorders. Neurotherapeutics. 2024;21(1):e00292.

21. Jiang Q, Yin J, Chen J, Ma X, Wu M, Liu G, et al. Mitochondria-targeted antioxidants: a step towards disease treatment. Oxid Med Cell Longev. 2020;2020:8837893.

22. Bertholet AM, Delerue T, Millet AM, Moulis MF, David C, Daloyau M, et al. Mitochondrial fusion/fission dynamics in neurodegeneration and neuronal plasticity. Neurobiol Dis. 2016;90:3-19.

23. Zhu Y, Zhang J, Deng Q, Chen X. Mitophagy-associated programmed neuronal death and neuroinflammation. Front Immunol. 2024;15:1460286.

24. Song N, Mei S, Wang X, Hu G, Lu M. Focusing on mitochondria in the brain: from biology to therapeutics. Transl Neurodegener. 2024;13(1):23.

25. Lee MJ-C, Saner NJ, Ferri A, García-Domínguez E, Broatch JR, Bishop DJ. Delineating the contribution of ageing and physical activity to changes in mitochondrial characteristics across the lifespan. Mol Aspects Med. 2024;97:101272.

26. Jang J, Kim SR, Lee JE, Lee S, Son HJ, Choe W, et al. Molecular mechanisms of neuroprotection by ketone bodies and ketogenic diet in cerebral ischemia and neurodegenerative diseases. Int J Mol Sci. 2024;25(1):124.

27. Liu Y, Fang M, Tu X, Mo X, Zhang L, Yang B, et al. Dietary polyphenols as anti-aging agents: targeting the hallmarks of aging. Nutrients. 2024;16(19):3305.

Diterbitkan

02-04-2025

Unduhan

Data unduhan tidak tersedia.

Cara Mengutip

[1]
Melawan Penurunan Kognitif pada Otak yang Menua Lewat Pemulihan Fungsi Mitokondria. MEDICINUS 2025;38:38-44. https://doi.org/10.56951/wdpk3k28.