Memanfaatkan Kecerdasan Buatan dan Pembelajaran Mesin dalam Inovasi Farmasi

Penulis

  • Raymond R. Tjandrawinata Dexa Group and Center for Pharmaceutical and Nutraceutical Research and Policy, Unika Atma Jaya

DOI:

https://doi.org/10.56951/kma7ev64

Kata Kunci:

kecerdasan buatan, pembelajaran mesin, farmasi, revolusi industri

Abstrak

Integrasi kecerdasan buatan (artificial intelligence/AI) dan pembelajaran mesin (machine learning/ML) telah merevolusi industri farmasi, mengubah cara obat ditemukan, dikembangkan, diuji, dan diproduksi. Teknologi ini memungkinkan efisiensi dan akurasi yang belum pernah terjadi sebelumnya dengan memanfaatkan sejumlah besar data dan algoritma
komputasi canggih. Dalam penemuan obat, AI mempercepat identifikasi target terapeutik dan desain molekul baru, secara drastis mengurangi waktu menuju pemasaran. Selama pengembangan, ML membantu mengoptimalkan desain uji klinik dan stratifikasi populasi pasien untuk meningkatkan presisi dan efektivitas. Dalam uji klinik, alat berbasis AI meningkatkan rekrutmen, pemantauan, dan desain adaptif, menghasilkan studi yang lebih andal dan hemat biaya. Terakhir, AI memastikan pengendalian kualitas real-time dan pemeliharaan prediktif dalam manufaktur, meningkatkan konsistensi produk dan mengurangi biaya operasional. Makalah ini mengeksplorasi aplikasi AI/ML secara komprehensif di berbagai domain, didukung oleh studi kasus dan analisis mendalam tentang dampaknya. Selain itu, makalah ini membahas tantangan seperti kualitas data, hambatan regulasi, dan transparansi algoritma yang menghambat adopsinya secara luas. Pertimbangan etis, termasuk masalah privasi dan risiko bias dalam sistem AI juga dievaluasi. Akhirnya, makalah ini menguraikan peluang untuk kemajuan di masa depan, menekankan perlunya upaya kolaboratif antara akademisi, industri, dan badan regulasi untuk memanfaatkan potensi penuh AI/ML dalam membentuk kembali lanskap farmasi.

Referensi

1. Niazi SK. The coming of age of AI/ML in drug discovery, development, clinical testing, and manufacturing: The FDA perspectives. Drug Design, Development and Therapy 2023;17:2691-725. https://doi.org/10.2147/DDDT.S424991.

2. Cremin CJ, Dash S, Huang X. Big data: historic advances and emerging trends in biomedical research. Current Research in Biotechnology 2022;4:138-51. https://doi.org/10.1016/j.crbiot.2022.07.005.

3. Rehman AU, Li M, Wu B, Ali Y, Rasheed S, Shaheen S, et al. Role of artificial intelligence in revolutionizing drug discovery. Fundamental Research. Advance online publication 2024. https://doi.org/10.1016/j.fmre.2024.04.021.

4. Yadav S, Singh A, Singhal R, Yadav JP. Revolutionizing drug discovery: the impact of artificial intelligence on advancements in pharmacology and the pharmaceutical industry. Intelligent Pharmacy 2024;2(3):367-80. https://doi.org/10.1016/j.intpharm.2024.03.015.

5. Yaiprasert C and Hidayanto AN. AI-powered ensemble machine learning to optimize cost strategies in logistics business. International Journal of Information Management Data Insights 2024;4(1):100209. https://doi.org/10.1016/j.jjimd.2024.100209.

6. Makutam V, Achanti SY, Doostan M. Integration of artificial intelligence in adaptive trial designs: enhancing efficiency and patient-centric outcomes. International Journal of Advanced Research 2024;12(8):205-15. https://doi.org/10.21474/IJAR01/19245.

7. Ashique S, Mishra N, Mohanto S, Garg A, Taghizadeh-Hesary F, Gowda BHJ, et al. Application of artificial intelligence (AI) to control COVID-19 pandemic: current status and future prospects. Heliyon 2024;10(4):e25754. https://doi.org/10.1016/j.heliyon.2024.e25754.

8. Ismail A, Al-Zoubi T, El Naqa I, Saeed H. The role of artificial intelligence in hastening time to recruitment in clinical trials. BJR Open 2023;5(1):20220023. https://doi.org/10.1259/bjro.20220023.

9. Jackson I, Ivanov D, Dolgui A, Namdar J. Generative artificial intelligence in supply chain and operations management: a capability-based framework for analysis and implementation. International Journal of Production Research 2024;62(17):6120-45. https://doi.org/10.1080/00207543.2024.1001234.

10. Martinelli DD. Generative machine learning for de novo drug discovery: a systematic review. Computers in Biology and Medicine 2022;145:105403. https://doi.org/10.1016/j.compbiomed.2022.105403.

11. Udegbe F, Ebulue OR, Ebulue CC, Ekesiobi C. Machine learning in drug discovery: a critical review of applications and challenges. Computer Science & IT Research Journal 2024;5(4):892-902. https://doi.org/10.51594/csitrj.v5i4.1048.

12. Quazi S. Artificial intelligence and machine learning in precision and genomic medicine. Medical Oncology 2022;39(8):120. https://doi.org/10.1007/s12032-022-01711-1.

13. Krishnan G Singh S, Pathania M, Gosavi S, Abhishek S, Parchani A, et al. Artificial intelligence in clinical medicine: catalyzing a sustainable global healthcare paradigm. Frontiers in Artificial Intelligence 2023;6:1227091. https://doi.org/10.3389/frai.2023.1227091.

14. Mistri iu, Badge A, Shahu S. Enhancing patient safety culture in hospitals.Cureus 2023;15(12):e51159.https://doi.org/10.7759/cureus.51159.

15. Ucar A, Karakose M, Kırımça N. Artificial intelligence for predictive maintenance applications: key components, trustworthiness, and future trends. Applied Sciences 2024;14(2):898. https://doi.org/10.3390/app14020898.

16. SDL Corp. How Odoo helped reduce downtime in a production facility? Available from https://sdlccorp.com/post/how-odoo-helped-reduce-downtime-in-a-production-facility/ cited December 19th, 2024.

17. Alberts M, St. John S, Khojandi A, Jared B, Schmitz T, Karandikar J, et al. Transitioning from simulation to reality: applying chatter detection models to real-world machining data. Machines 2024;12(12):923. https://

doi.org/10.3390/machines12120923.

18. Huanbutta K, Burapapadh K, Kraisit P, Sriamornsak P, Ganokratanaa T Suwanpitak K, et al. Artificial intelligence-driven pharmaceutical industry: a paradigm shift in drug discovery, formulation development, manufacturing, quality control, and post-market surveillance. European Journal of Pharmaceutical Sciences 2024;203:106938. https://doi.org/10.1016/j.ejps.2024.106938.

19. Yang Y, Lin M, Zhao H, Peng Y, Huang F, Lu Z. A survey of recent methods for addressing AI fairness and bias in biomedicine. Journal of Biomedical Informatics 2024;154:104646. https://doi.org/10.1016/j.jbi.2024.104646.

20. Mennella C, Maniscalco U, De Pietro G, Esposito M. Ethical and regulatory challenges of AI technologies in healthcare: a narrative review. Heliyon 2024;10(4):e26297. https://doi.org/10.1016/j.heliyon.2024.e26297.

21. Ahmed MI, Spooner B, Isherwood J, Lane M, Orrock E, Dennison A. A systematic review of the barriers to the implementation of artificial intelligence in healthcare. Cureus 202315(10):e46454. https://doi.org/10.7759/cureus.46454.

Diterbitkan

01-02-2025

Unduhan

Data unduhan tidak tersedia.

Cara Mengutip

[1]
Memanfaatkan Kecerdasan Buatan dan Pembelajaran Mesin dalam Inovasi Farmasi. MEDICINUS 2025;38:28-35. https://doi.org/10.56951/kma7ev64.