Farmasi Cerdas: Era Baru Penemuan Obat dengan AI dan Big Data

Penulis

  • Raymond R Tjandrawinata Pusat Penelitian dan Kebijakan Nutrasetika dan Farmasi, Universitas Katolik Indonesia Atma Jaya, Jakarta

DOI:

https://doi.org/10.56951/rhvmjy22

Kata Kunci:

pengembangan obat, kecerdasan buatan, big data

Abstrak

Proses penemuan obat telah memasuki era baru dengan munculnya kecerdasan buatan (artificial intelligence/AI) dan big data. Pendekatan tradisional, panjang, dan mahal kini dilengkapi dengan alternatif yang efisien berkat kemampuan AI untuk menganalisis pola yang kompleks dan kemampuan big data untuk mengintegrasikan kumpulan data berskala besar. Artikel ini membahas peran teknologi tersebut dalam mempercepat inovasi farmasi, mengulas aplikasi praktis, dan menyoroti tantangan serta prospek masa depan. Dengan AI dan big data, industri farmasi dapat memajukan pengobatan presisi dan memperdalam pemahaman kita tentang biologi penyakit.

Referensi

1. Singh N, Vayer P, Tanwar S, Poyet JL, Tsaioun K, Villoutreix BO. Drug discovery and development: introduction to the general public and patient groups. Front Drug Discov. 2023;3. DOI: https://doi.org/10.3389/fddsv.2023.1201419

2. Mansoor S, Hamis S, Tuan TT, Park JE, Chung YS. Advance computational tools for multiomics data learning. Biotechnology Advances 2024;77:108447. DOI: https://doi.org/10.1016/j.biotechadv.2024.108447

3. Singh S, Gupta H, Sharma P, Sahi S. Advances in artificial intelligence (AI)-assisted approaches in drug screening. Artificial Intelligence Chemistry 2024;2(1):100039. DOI: https://doi.org/10.1016/j.aichem.2023.100039

4. Lathakumari RH, Vajravelu LK, Satheesan A, Ravi S, Thulukanam J. Antibiotics and the gut microbiome: understanding the impact on human health. Medicine in Microecology 2024;20:100106. DOI: https://doi.org/10.1016/j.medmic.2024.100106

5. Branda F and Scarpa F. Implications of artificial intelligence in addressing antimicrobial resistance: innovations, global challenges, and healthcare’s future. Antibiotics 2024;13(6):502. DOI: https://doi.org/10.3390/antibiotics13060502

6. Ramzan F, Sartori C, Consoli S, Recupero DR. Generative adversarial networks for synthetic data generation in finance: evaluating statistical similarities and quality assessment. AI 2024;5(2):667–85. DOI: https://doi.org/10.3390/ai5020035

7. Zhang X, Wu X, Yang N, Zhan X, Liao J, Mai S, et al. In silico methods for identification of potential therapeutic targets. Interdisciplinary Sciences: Computational Life Sciences 2022;14:285–310. DOI: https://doi.org/10.1007/s12539-021-00491-y

8. Maan K, Baghel R, Dhariwal S, Sharma A, Bakhshi R, Rana P. Metabolomics and transcriptomics based multiomics integration reveals radiation-induced altered pathway networking and underlying mechanism. npj Systems Biology and Applications 2023;9:42. DOI: https://doi.org/10.1038/s41540-023-00305-5

9. Liu CSC and Pandey R. Integrative genomics would strengthen AMR understanding through ONE health approach. Heliyon 2024;10(14):e34719. DOI: https://doi.org/10.1016/j.heliyon.2024.e34719

10. Kaushik R, Christodoulides M, Kant R. Artificial intelligence in accelerating vaccine development: current and future perspectives. Frontiers in Bacteriology 2023;2:1258159. DOI: https://doi.org/10.3389/fbrio.2023.1258159

11. Sakagianni A, Koufopoulou C, Koufopoulos P, Kalantzi S, Theodorakis N, Nikolaou M, et al. Data-driven approaches in antimicrobial resistance: machine learning solutions. Antibiotics 2024;13(11):1052. DOI: https://doi.org/10.3390/antibiotics13111052

12. Desai D, Kantliwala SV, Vybhavi J, Ravi R, Patel H, Patel J. Review of AlphaFold 3: transformative advances in drug design and therapeutics. Cureus 2024;16(7):e63646. DOI: https://doi.org/10.7759/cureus.63646

13. Ren F, Aliper A, Chen J, et al. A small-molecule TNIK inhibitor targets fibrosis in preclinical and clinical models. Nature Biotechnology 2024 https://doi.org/10.1038/s41587-024-02143-0 DOI: https://doi.org/10.1038/s41587-024-02143-0

14. Visan AI and Negut I. Integrating artificial intelligence for drug discovery in the context of revolutionizing drug delivery. Life 2024;14(2):233. DOI: https://doi.org/10.3390/life14020233

15. Burki T. A new paradigm for drug development. The Lancet Digital Health 2020;2(5):e226-7. DOI: https://doi.org/10.1016/S2589-7500(20)30088-1

16. Rehman AU, Li M, Wu B, Ali Y, Rasheed S, Liu X, et al. Role of artificial intelligence in revolutionizing drug discovery. Fundamental Research. 2024 https://doi.org/10.1016/j.fmre.2024.04.021 DOI: https://doi.org/10.1016/j.fmre.2024.04.021

17. Sakagianni A, Koufopoulou C, Feretzakis G, Kalles D, Verykios VS, Myrianthefs P, et al. Using machine learning to predict antimicrobial resistance―a literature review. Antibiotics 2023;12(3):452. DOI: https://doi.org/10.3390/antibiotics12030452

18. Vora LK, Gholap AD, Jetha K, Thakur RRS, Solanki HK, Chavda. Artificial intelligence in pharmaceutical technology and drug delivery design. Pharmaceutics 2023;15(7):1916. DOI: https://doi.org/10.3390/pharmaceutics15071916

19. Li Y, Cui X, Yang X, Liu G, Zhang J. Artificial intelligence in predicting pathogenic microorganisms’ antimicrobial resistance: challenges, progress, and prospects. Frontiers in Cellular and Infection Microbiology

2024;14:1482186.

20. Serrano DR, Luciano FC, Anaya BJ, Ongoren B, Kara A, Molina G, et al. Artificial intelligence (AI) applications in drug discovery and drug delivery: revolutionizing personalized medicine. Pharmaceutics 2-24;16(10):1328. DOI: https://doi.org/10.3390/pharmaceutics16101328

21. Norori N, Hu Q, Aellen FM, Faraci FD. Addressing bias in big data and AI for health care: a call for open science. Patterns 2021;2(10):100347. DOI: https://doi.org/10.1016/j.patter.2021.100347

22. Picard M, Scott-Boyer MP, Bodein A, Périn O, Droit A. Integration strategies of multi-omics data for machine learning analysis. Computational and Structural Biotechnology Journal 2021;19:3735–46. DOI: https://doi.org/10.1016/j.csbj.2021.06.030

23. Spalevic Z and Vićentijević K. GDPR and challenges of personal data protection. The European Journal of Applied Economics 2022;19(1):55–65. DOI: https://doi.org/10.5937/EJAE19-36596

24. Blanco-González A, Cabezón A, Seco-González A, Conde-Torres D, Antelo-Riveiro P, Piñeiro Á, et al. The role of AI in drug discovery: challenges, opportunities, and strategies. Pharmaceuticals 2023;16(6):891. DOI: https://doi.org/10.3390/ph16060891

25. Peretz-Andersson E, Tabares S, Mikalef P, Parida V. Artificial intelligence implementation in manufacturing SMEs: a resource orchestration approach. International Journal of Information Management 2024;77:102781. DOI: https://doi.org/10.1016/j.ijinfomgt.2024.102781

26. Taye MM. Understanding of machine learning with deep learning: architectures, workflow, applications, and future directions. Computers 2023;12(5):91. DOI: https://doi.org/10.3390/computers12050091

27. Chakraborty C, Bhattacharya M, Pal S, Lee SS. From machine learning to deep learning: advances of the recent data-driven paradigm shift in medicine and healthcare. Current Research in Biotechnology 2024;7:100164. DOI: https://doi.org/10.1016/j.crbiot.2023.100164

28. Chavali D, Baburajan B, Kumar V, Katari SC. Regulating artificial intelligence: developments and challenges. International Journal of Pharmaceutical Sciences 2024;2(1):1250–61.

29. Aldoseri A, Al-Khalifa KN, Hamouda AM. Re-thinking data strategy and integration for artificial intelligence: concepts, opportunities, and challenges. Applied Sciences 2023;13(12):7082. DOI: https://doi.org/10.3390/app13127082

30. Malik S, Muhammad K, Waheed Y. Emerging applications of nanotechnology in healthcare and medicine. Molecules 2023;28(18):6624. DOI: https://doi.org/10.3390/molecules28186624

31. Al-Thani AN, Jan AG, Abbas M, Geetha M, Sadasivuni KK. Nanoparticles in cancer theragnostic and drug delivery: a comprehensive review. Life Sciences 2024;352:122899. DOI: https://doi.org/10.1016/j.lfs.2024.122899

32. Marques L, Costa B, Pereira M, Silva A, Santos J, Saldanha L. Advancing precision medicine: a review of innovative in silico approaches for drug development, clinical pharmacology, and personalized healthcare. Pharmaceutics 2024;16(3):332. DOI: https://doi.org/10.3390/pharmaceutics16030332

33. Walter Y. Managing the race to the moon: global policy and governance in artificial intelligence regulation—a contemporary overview and an analysis of socioeconomic consequences. Discover Artificial Intelligence 2024;4:14. DOI: https://doi.org/10.1007/s44163-024-00109-4

34. Ankolekar A, Eppings L, Bottari F, Pinho IF, Howard K, Baker R, et al. Using artificial intelligence and predictive modelling to enable learning healthcare systems (LHS) for pandemic preparedness. Computational and Structural Biotechnology Journal 2024;24:412-9. DOI: https://doi.org/10.1016/j.csbj.2024.05.014

35. Chen H, King FJ, Zhou B, Wang Y, Canedy CJ, Hayashi J, et al. Drug target prediction through deep learning functional representation of gene signatures. Nature Communications 2024;15:1853. DOI: https://doi.org/10.1038/s41467-024-46089-y

36. Irissarry C and Burger-Helmchen T. Using artificial intelligence to advance the research and development of orphan drugs. Businesses 2024;4(3):453–72. DOI: https://doi.org/10.3390/businesses4030028

37. Hassan M, Awan FM, Naz A, deAndrés-Galiana EJ, Alvarez O, Cernea A, et al. Innovations in genomics and big data analytics for personalized medicine and health care: a review. International Journal of Molecular Sciences 2022;23(9):4645. DOI: https://doi.org/10.3390/ijms23094645

38. Huanbutta K, Burapapadh K, Kraisit P, Sriamornsak P, Ganokratanaa T, Suwanpitak K, et al. Artificial intelligence-driven pharmaceutical industry: a paradigm shift in drug discovery, formulation development, manufacturing, quality control, and post-market surveillance. European Journal of Pharmaceutical Sciences 2024;203:106938. DOI: https://doi.org/10.1016/j.ejps.2024.106938

Diterbitkan

01-01-2025

Unduhan

Data unduhan tidak tersedia.

Cara Mengutip

[1]
Farmasi Cerdas: Era Baru Penemuan Obat dengan AI dan Big Data. MEDICINUS 2025;38:27-36. https://doi.org/10.56951/rhvmjy22.