Pengembangan Nanoselulosa Bakteri yang Mengandung Ekstrak Propolis Sebagai Pembalut Luka Bakar
DOI:
https://doi.org/10.56951/cnnqkm69Kata Kunci:
nanoselulosa bakteri (BNC), ekstrak propolis nonetanolik (PgEP), BNC mengandung PgEP (BNC-P), antimikroba, luka bakarAbstrak
Nanoselulosa bakteri (bacterial nanocellulose/BNC) adalah bahan yang menjanjikan untuk penyembuhan luka bakar. Keunggulan BNC antara lain bersifat biokompatibel, biodegradable, serta memiliki tingkat kemurnian selulosa yang tinggi. Karakteristik BNC memenuhi mayoritas sifat pembalut luka yang optimal sehingga hanya memerlukan sedikit modifikasi untuk mencapai titik optimal. Modifikasi utama yang diperlukan BNC adalah penambahan aktivitas antimikroba. Ekstrak propolis nonetanolik (PgEP) digunakan sebagai agen antimikroba karena berpotensi membantu proses penyembuhan luka bakar. Penelitian ini bertujuan untuk mendemonstrasikan aktivitas antimikroba serta hasil penyembuhan luka bakar secara in vivo menggunakan BNC yang mengandung PgEP (BNC-P). Menggunakan air kelapa sebagai substitusi sumber karbon, dihasilkan rendemen BNC sebesar 161,54±35,92 g/l yang secara signifikan lebih tinggi dibandingkan media standar (p=0,025). BNC-P memiliki efisiensi penjerapan sebesar 52,91±1,16% dan drug load berbanding lurus dengan konsentrasi PgEP. Terkait aktivitas antimikroba, BNC-P pada tiga tingkat konsentrasi (1, 3, dan 5%) menunjukkan diameter hambat berturut-turut sebesar 7,7±0,31; 12,22±0,99; dan 13,68±1,58 mm. Pada demonstrasi penyembuhan luka bakar in vivo, BNC-P dengan konsentrasi 1% (BNC-P1) memiliki aktivitas penyembuhan luka paling tinggi.
Unduhan
Referensi
World Health Organization (WHO). Burns [Internet]. Available from: https://www.who.int/news-room/factsheets/detail/burns cited Jun 7th, 2024.
Ji S, Xiao S, Xia Z. Consensus on the treatment of second-degree burn wounds (2024 edition). Burns Trauma 2024;12:tkad061. DOI: https://doi.org/10.1093/burnst/tkad061
Andrews CJ. Validating the relationship between burn temperature, duration of exposure and tissue injury severity for scald burns [dissertation]. Brisbane (Australia): The University of Queensland; 2017.
Yasti AC, Senel E, Saydam M, Ozok G, Coruh A, Yorganci K. Guideline and treatment algorithm for burn injuries. Ulus Travma Acil Cerrahi Derg. 2015;21(2):79-89. DOI: https://doi.org/10.5505/tjtes.2015.88261
World Health Organization (WHO). Burn management [Internet]. Available from: https://cdn.who.int/media/docs/default-source/integrated-health-services-(ihs)/csy/surgical-care/imeesc-toolkit/bestpractice-safety-protocols/burn-management.pdf?sfvrsn=90e35f3d_5 cited Jun 10th, 2024.
Dahlstrøm KK. A new silicone rubber dressing used as a temporary dressing before delayed split skin grafting: A prospective randomised study. Scand J Plast Reconstr Surg Hand Surg. 1995 Jan 8;29(4):325–7. DOI: https://doi.org/10.3109/02844319509008967
Martini L, Reali UM, Borgognoni L, Brandani P, Andriessen A. Comparison of two dressings in the management of partial-thickness donor sites. J Wound Care. 1999;8(9):457–60. DOI: https://doi.org/10.12968/jowc.1999.8.9.26208
Caló E, Khutoryanskiy VV. Biomedical applications of hydrogels: A review of patents and commercial products. Eur Polym J. 2015;65:252–67. DOI: https://doi.org/10.1016/j.eurpolymj.2014.11.024
Reshmy R, Philip E, Thomas D, Madhavan A, Sindhu R, Binod P, et al. Bacterial nanocellulose: engineering, production, and applications. Bioengineered. 2021;12(2):11463–83. DOI: https://doi.org/10.1080/21655979.2021.2009753
Sulaeva I, Henniges U, Rosenau T, Potthast A. Bacterial cellulose as a material for wound treatment: Properties and modifications. A review. Biotechnol Adv. 2015 Dec;33(8):1547–71. DOI: https://doi.org/10.1016/j.biotechadv.2015.07.009
Hossain R, Quispe C, Khan RA, Saikat ASM, Ray P, Ongalbek D, et al. Propolis: An update on its chemistry and pharmacological applications. Chinese Medicine 2022 17:1. 2022 Aug 26;17(1):1–60. DOI: https://doi.org/10.1186/s13020-022-00651-2
Sadasivam S. Carbohydrates. In: Biochemical Methods. New Age International; 1996. p. 1–19.
Badan Standarisasi Nasional (BSN). Standar Nasional Indonesia: Propolis cair [Internet]. 2018. Available from: www.bsn.go.id
CLSI. M02-A12: Performance standards for antimicrobial disk susceptibility tests; approved standard—Twelfth Edition. Clinical and Laboratory Standards Institute 2015;35:M02-A12.
da Silva Barud H, de Araújo Júnior AM, Saska S, Mestieri LB, Campos JADB, de Freitas RM, et al. Antimicrobial brazilian propolis (EPP-AF) containing biocellulose membranes as promising biomaterial for skin wound healing. Evid Based Complement Alternat Med. 2013;2013:703024. DOI: https://doi.org/10.1155/2013/703024
Anis A, Sharshar A, El Hanbally S, Shehata AA. Histopathological evaluation of the healing process of standardized skin burns in rabbits: assessment of a natural product with honey and essential oils. Journal of Clinical Medicine 2022;11(21):6417. DOI: https://doi.org/10.3390/jcm11216417
Rozaini MZ, Zooki ABZ, Noordin M, Norimah Y, Hakim AN. The effects of different types of honey on tensile strength evaluation of burn wound tissue healing. Int J Appl Res Vet Med. 2004;2(4):290–6.
Prades A, Dornier M, Diop N, Pain JP. Coconut water uses, composition and properties: a review. Fruits 2012;67(2):87–107. DOI: https://doi.org/10.1051/fruits/2012002
Kongruang S. Bacterial cellulose production by Acetobacter xylinum strains from agricultural waste products. Appl Biochem Biotechnol. 2008;148(1–3):245–56. DOI: https://doi.org/10.1007/s12010-007-8119-6
Molina-Ramírez C, Castro M, Osorio M, Torres-Taborda M, Gómez B, Zuluaga R, et al. Effect of different carbon sources on bacterial nanocellulose production and structure using the low pH resistant strain Komagataeibacter medellinensis. Materials (Basel) 2017;10(6):639. DOI: https://doi.org/10.3390/ma10060639
Shayanthavi S, Kapilan R, Wickramasinghe I. Comprehensive analysis of physicochemical, nutritional, and antioxidant properties of various forms and varieties of tender coconut (Cocos nucifera L.) water in Northern Sri Lanka. Food Chemistry Advances 2024;4:100645. DOI: https://doi.org/10.1016/j.focha.2024.100645
Awua AK, Doe ED, Agyare R. Exploring the influence of sterilisation and storage on some physicochemical properties of coconut (Cocos nucifera L.) water. BMC Res Notes 2011;4(1):451. DOI: https://doi.org/10.1186/1756-0500-4-451
Bodin A, Bãckdahl H, Petersen N, Gatenholm P. Bacterial cellulose as biomaterial. In: Ducheyne P, Healy K, Hutmacher DW, Grainger DW, Kirkpatrick J, editors. Comprehensive Biomaterials. Elsevier; 2015. p.405–10. DOI: https://doi.org/10.1016/B978-0-08-055294-1.00080-5
Singhania RR, Patel AK, Tsai M, Chen C, Dong CD. Genetic modification for enhancing bacterial cellulose production and its applications. Bioengineered. 2021;12(1):6793-807. DOI: https://doi.org/10.1080/21655979.2021.1968989
McKenna BA, Mikkelsen D, Wehr JB, Gidley MJ, Menzies NW. Mechanical and structural properties of native and alkali-treated bacterial cellulose produced by Gluconacetobacter xylinus strain ATCC 53524. Cellulose 2009;16(6):1047–55. DOI: https://doi.org/10.1007/s10570-009-9340-y
Stanisławska A, Staroszczyk H, Szkodo M. The effect of dehydration/rehydration of bacterial nanocellulose on its tensile strength and physicochemical properties. Carbohydr Polym. 2020;236:116023. DOI: https://doi.org/10.1016/j.carbpol.2020.116023
Mujtaba M, Negi A, King AWT, Zare M, Kuncova-Kallio J. Surface modifications of nanocellulose for drug delivery applications; a critical review. Curr Opin Biomed Eng. 2023;28:100475. DOI: https://doi.org/10.1016/j.cobme.2023.100475
Das M, Lalsangi S, Santra S, Banerjee R. Nanocellulose as a carrier for improved drug delivery: Progresses and innovation. J Drug Deliv Sci Technol. 2024;97:105743. DOI: https://doi.org/10.1016/j.jddst.2024.105743
Wu J, Zheng Y, Song W, Luan J, Wen X, Wu Z, et al. In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohydr Polym. 2014;102:762–71. DOI: https://doi.org/10.1016/j.carbpol.2013.10.093
Tsolakidis S, Freytag DL, Dovern E, Alharbi Z, Kim BS, Houschyar KS, et al. Infections in burn patients: A retrospective view over seven years. Medicina (B Aires). 2022;58(8):1066. DOI: https://doi.org/10.3390/medicina58081066
El-Sakhawy M, Salama A, Tohamy HAS. Applications of propolis-based materials in wound healing. Arch Dermatol Res. 2023;316(1):61. DOI: https://doi.org/10.1007/s00403-023-02789-x
Olczyk P, Komosinska-Vassev K, Winsz-Szczotka K, Stojko J, Klimek K, Kozma EM. Propolis induces chondroitin/dermatan sulphate and hyaluronic acid accumulation in the skin of burned wound. EvidenceBased Complementary and Alternative Medicine. 2013; 2013:290675.. DOI: https://doi.org/10.1155/2013/290675
Unduhan
Terbitan
Bagian
Diterbitkan
Unduhan
Lisensi
Hak Cipta (c) 2024 Calista Tantya Hadiwarsito, Safira Prisya Dewi, Heni Rachmawati

Artikel ini berlisensi Creative Commons Attribution-NonCommercial 4.0 International License.