Elemen Zink sebagai Penopang Pertumbuhan dan Kehidupan Janin Intrauterin
DOI:
https://doi.org/10.56951/2x5pd478Kata Kunci:
zink, stres oksidatif, kelainan kongenital, abortus, pertumbuhan janin terhambat, prematurAbstrak
Zink (zinc/Zn)adalah mineral penting yang diketahui mempunyai fungsi fisiologis yang berpengaruh terhadap sistem kekebalan tubuh. Zink memainkan peran yang sangat penting dalam berbagai fungsi tubuh manusia, termasuk sintesis protein dan metabolisme asam nukleat. Zink juga merupakan salah satu nutrisi dasar yang dibutuhkan selama kehamilan untuk perkembangan normal dan pertumbuhan janin di samping mikronutrien lainnya seperti besi dan kalsium. Kekurangan zink selama kehamilan menyebabkan dampak permanen pada bayi baru lahir seperti gangguan pertumbuhan, abortus spontan, cacat bawaan, dan luaran kehamilan yang buruk. Zinc memainkan peran yang sangat penting dan kritis dalam berbagai fungsi tubuh manusia termasuk sintesis protein dan metabolisme asam nukleat. Dampak defisiensi Zn sangat menonjol bahkan pada kehidupan janin intrauterin. Studi suplementasi Zn pada populasi yang pernah dilakukan sebelumnya menunjukkan hasil yang bertentangan pada berbagai outcome kehamilan. Defisiensi Zn menyebabkan potensi peningkatan stres oksidatif dan berakhir dengan kematian sel. Beberapa penelitian yang dilakukan mengenai status Zn pada ibu hamil menunjukan kadar Zn yang rendah pada neonatus dengan status kecil pada masa kehamilan serta peningkatan kasus preterm. Suplementasi zink oral merupakan upaya potensial untuk mengurangi risiko kelahiran bayi dengan berat badan rendah dan pada akhirnya mencegah morbiditas dan mortalitas bayi baru lahir yang terkait dengan kondisi ini. Fungsi Zn pada ibu termasuk mendukung pertumbuhan uterus selama kehamilan dan menurunkan potensi preeklamsia, namun bukti yang mendukung suplementasi zink secara rutin masih belum tersedia. Dampak defisiensi Zink relatif buruk selama kehamilan, meskipun demikian bukti penelitian mengenai kebutuhan suplementasi rutin yang diberikan pada semua ibu hamil masih menjadi perdebatan, karena manfaatnya yang secara metaanalisis tidak terlalu nyata. Suplementasi lebih disarankan pada populasi risiko tinggi agar tidak terjadi outcome yang buruk pada kehamilan.
Unduhan
Referensi
Burton GJ, Jauniaux E. The human placenta: new perspectives on its formation and function during early pregnancy. Proc. R. Soc. 2023;B290:20230191. DOI: https://doi.org/10.1098/rspb.2023.0191
Schreiner C, Powell TL, Palmer C. et al. Placental proteins with predicted roles in fetal development decrease in premature infants. Pediatr Res. 2022;92:1316–24. DOI: https://doi.org/10.1038/s41390-022-01942-y
Putra IWA. Molecular Development of Placenta and Its Relationship with Preeclampsia and Fetal Growth Restriction. European Journal of Medical and Health Sciences 2022;4(4):38–42. DOI: https://doi.org/10.24018/ejmed.2022.4.4.1361
Mert I, Oruc AS, Yuksel S, Cakar ES, Buyukkagnici U, Karaer A, et al. Role of oxidative stress in preeclampsia and intrauterine growth restriction. J Obstet Gynaecol Res. 2012;38(4):658-64. DOI: https://doi.org/10.1111/j.1447-0756.2011.01771.x
Anto EO, Boadu WIO, Addai-Mensah O, Wiafe YA, Owiredu WKBA, Obirikorang C. et al. Association between micronutrients, oxidative stress biomarkers and angiogenic growth mediators in early and late-onset preeclamptic Ghanaian women. SAGE Open Medicine 2023;11:1-16. DOI: https://doi.org/10.1177/20503121231175759
Wang H, Hu YF, Hao JH, et al. Maternal zinc deficiency during pregnancy elevates the risks of fetal growth restriction: a population-based birth cohort study. Sci Rep. 2015;5:11262.
Banupriya N, Bhat BV, Vickneshwaran V, Sridhar MG. Effect of zinc supplementation on relative expression of immune response genes in neonates with sepsis: A preliminary study. Indian J Med Res. 2020;152(3):296-302. DOI: https://doi.org/10.4103/ijmr.IJMR_557_18
Yan M, Song Y, Wong CP, Hardin K, Ho E. Zinc deficiency alters DNA damage response genes in normal human prostate epithelial cells. J Nutr. 2008;138(4):667-73. DOI: https://doi.org/10.1093/jn/138.4.667
Moghimi M, Ashrafzadeh S, Rassi S, Naseh A. Maternal zinc deficiency and congenital anomalies in newborns. Pediatr Int. 2017;59(4):443-6. DOI: https://doi.org/10.1111/ped.13176
Saremi A, Roomandeh N, Sanaye Naderi M, Younesi B, Lashgari P, Zare A. Evaluation of serum zinc levels in women with recurrent spontaneous abortion. SJMR 2017;2(3):159-63. DOI: https://doi.org/10.29252/sjrm.1.4.159
Zong L, Wei X, Gou W, Huang P, Lv Y. Zinc improves learning and memory abilities of fetal growth restriction rats and promotes trophoblast cell invasion and migration via enhancing STAT3-MMP-2/9 axis activity. Oncotarget. 2017;8(70):115190-201. DOI: https://doi.org/10.18632/oncotarget.23122
Wilson RL, Leemaqz SY, Goh Z, McAninch D, Jankovic-Karasoulos T, Leghi GE, et al. Zinc is a critical regulator of placental morphogenesis and maternal hemodynamics during pregnancy in mice. Sci Rep. 2017;7(1):15137. DOI: https://doi.org/10.1038/s41598-017-15085-2
Gernand AD, Schulze KJ, Stewart CP, West KP Jr, Christian P. Micronutrient deficiencies in pregnancy worldwide: health effects and prevention. Nat Rev Endocrinol. 2016;12(5):274-89. DOI: https://doi.org/10.1038/nrendo.2016.37
Malia M, Yusrawati, Sukma R. Differences of Zinc and Copper Levels In Placenta Blood Normal Neonates and Intrauterine Growth Restriction. Journal of Midwifery 2018;3(2):19-25. DOI: https://doi.org/10.25077/jom.3.2.19-26.2018
Barman N, Salwa M, Ghosh D, Rahman MW, Uddin MN, Haque MA. Reference Value for Serum Zinc Level of Adult Population in Bangladesh. EJIFCC 2020;31(2):117-24.
Yokokawa H, Fukuda H, Saita M, Miyagami T, Takahashi Y, Hisaoka T, Naito T. Serum zinc concentrations and characteristics of zinc deficiency/marginal deficiency among Japanese subjects. J Gen Fam Med. 2020;21(6):248-55. DOI: https://doi.org/10.1002/jgf2.377
Killilea DW, Rohner F, Ghosh S, Otoo GE, Smith L, Siekmann JH, King JC. Identification of a Hemolysis Threshold That Increases Plasma and Serum Zinc Concentration. J Nutr. 2017;147(6):1218-25. DOI: https://doi.org/10.3945/jn.116.247171
Chaffee BW, King JC. Effect of zinc supplementation on pregnancy and infant outcomes: a systematic review. Paediatr Perinat Epidemiol. 2012;Suppl 1(01):118-37. DOI: https://doi.org/10.1111/j.1365-3016.2012.01289.x
Nossier S, Naeim N, El-Sayed N, Abu Zeid A. The effect of zinc supplementation on pregnancy outcomes: A double-blind, randomised controlled trial, Egypt. British Journal of Nutrition 2015;114(2):274-85. DOI: https://doi.org/10.1017/S000711451500166X
Wang H, Hu YF, Hao JH, Chen YH, Su PY, Wang Y, et al. Maternal zinc deficiency during pregnancy elevates the risks of fetal growth restriction: a population-based birth cohort study. Sci Rep. 2015;5:11262. DOI: https://doi.org/10.1038/srep11262
Olechnowicz J, Tinkov A, Skalny A, et al. Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism. J Physiol Sci 2018;68:19–31. DOI: https://doi.org/10.1007/s12576-017-0571-7
Ribeiro SM, Braga CB, Peria FM, Domenici FA, Martinez EZ, Feres O, et al. Effect of Zinc Supplementation on Antioxidant Defenses and Oxidative Stress Markers in Patients Undergoing Chemotherapy for Colorectal Cancer: a Placebo-Controlled, Prospective Randomized Trial. Biol Trace Elem Res. 2016;169(1):8-16. DOI: https://doi.org/10.1007/s12011-015-0396-2
Eide DJ. Transcription factors and transporters in zinc homeostasis: lessons learned from fungi. Crit Rev Biochem Mol Biol. 2020;55(1):88-110. DOI: https://doi.org/10.1080/10409238.2020.1742092
Lee SR. Critical Role of Zinc as Either an Antioxidant or a Prooxidant in Cellular Systems. Oxid Med Cell Longev. 2018;2018:9156285. DOI: https://doi.org/10.1155/2018/9156285
Marreiro DD, Cruz KJ, Morais JB, Beserra JB, Severo JS, de Oliveira AR. Zinc and Oxidative Stress: Current Mechanisms. Antioxidants (Basel). 2017;6(2):24. DOI: https://doi.org/10.3390/antiox6020024
Ahmad M, Wolberg A, Kahwaji CI. Biochemistry, Electron Transport Chain. [Updated 2022 Sep 5]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan. Available from: https://www.ncbi.nlm.nih.gov/books/NBK526105/
Auten, R., Davis, J. Oxygen Toxicity and Reactive Oxygen Species: The Devil Is in the Details. Pediatr Res. 2009;66:121–7. DOI: https://doi.org/10.1203/PDR.0b013e3181a9eafb
Patel R, Rinker L, Peng J, Chilian WM. Reactive Oxygen Species: The Good and the Bad [Internet]. Reactive Oxygen Species (ROS) in Living Cells. InTech; 2018. Available from: http://dx.doi.org/10.5772/intechopen.71547 DOI: https://doi.org/10.5772/intechopen.71547
Milkovic L, Cipak Gasparovic A, Cindric M, Mouthuy PA, Zarkovic N. Short Overview of ROS as Cell Function Regulators and Their Implications in Therapy Concepts. Cells. 2019;8(8):793. DOI: https://doi.org/10.3390/cells8080793
Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem. 2015;97:55–74. DOI: https://doi.org/10.1016/j.ejmech.2015.04.040
Almanza A, Carlesso A, Chintha C, Creedican S, Doultsinos D, Leuzzi, B, et al. Endoplasmic reticulum stress signalling – from basic mechanisms to clinical applications. FEBS J. 2018;286:241-78. DOI: https://doi.org/10.1111/febs.14608
Garner TB, Hester JM, Carothers A, Diaz FJ. Role of zinc in female reproduction. Biol Reprod. 2021;104(5):976-94. DOI: https://doi.org/10.1093/biolre/ioab023
Aumeistere L, Ciproviča I, Zavadska D, Bavrins K, Borisova A. Zinc Content in Breast Milk and Its Association with Maternal Diet. Nutrients. 2018;10(10):1438. DOI: https://doi.org/10.3390/nu10101438
Durrani AM, Parveen H. Zinc Deficiency and Its Consequences During Pregnancy. In: Khan, S.T., Malik, A. (eds) Microbial Biofertilizers and Micronutrient Availability. Springer, Cham. 2022. DOI: https://doi.org/10.1007/978-3-030-76609-2_3
Cochrane Library. Available from: https://www.cochrane.org/CD000230/PREG_zinc-supplementation-improving-pregnancy-and-infant-outcome.
Karamali M, Heidarzadeh Z, Seifati SM, et al. Zinc supplementation and the effects on metabolic status in gestational diabetes: a randomized, double-blind, placebo-controlled trial. J Diabetes Complicat. 2015;29:1314–9. DOI: https://doi.org/10.1016/j.jdiacomp.2015.07.001
Karamali M, Heidarzadeh Z, Seifati SM, et al. Zinc supplementation and the effects on pregnancy outcomes in gestational diabetes: a randomized, double-blind, placebo-controlled trial. Exp Clin Endocrinol Diabetes 2016;124:28–33. DOI: https://doi.org/10.1055/s-0035-1564146
Hafeez A, Mehmood G, Mazhar F. Oral zinc supplementation in pregnant women and its effect on birth weight: a randomised controlled trial. Archives of Disease in Childhood - Fetal and Neonatal Edition 2005;90:F170-1. DOI: https://doi.org/10.1136/adc.2004.063008
Donangelo CM, King JC. Maternal zinc intakes and homeostatic adjustments during pregnancy and lactation. Nutrients. 2012;4(7):782-98. DOI: https://doi.org/10.3390/nu4070782
Caulfield LE, Donangelo CM, Chen P, Junco J, Merialdi M, Zavaleta N. Red blood cell metallothionein as an indicator of zinc status during pregnancy. Nutrition 2008;24(11-12):1081-7. DOI: https://doi.org/10.1016/j.nut.2008.05.011
Unduhan
Terbitan
Bagian
Diterbitkan
Unduhan
Lisensi
Hak Cipta (c) 2023 Adhi Pribadi
Artikel ini berlisensi Creative Commons Attribution-NonCommercial 4.0 International License.