Pengaruh Desain Punch Terhadap Mutu Fisik dan Disolusi Tablet MUPS Metformin HCl

Penulis

  • Wanda B. Putri Departemen Ilmu Kefarmasian, Fakultas Farmasi/Pharmaceutical Material Engineering and Processing Research Group, Universitas Airlangga
  • Friesca S. Nurhaidah Departemen Ilmu Kefarmasian, Fakultas Farmasi/Pharmaceutical Material Engineering and Processing Research Group, Universitas Airlangga
  • Helmy Yusuf Departemen Ilmu Kefarmasian, Fakultas Farmasi/Pharmaceutical Material Engineering and Processing Research Group, Universitas Airlangga
  • Maria L.A.D. Lestari Departemen Ilmu Kefarmasian, Fakultas Farmasi/Pharmaceutical Material Engineering and Processing Research Group, Universitas Airlangga

DOI:

https://doi.org/10.56951/af7svb90

Kata Kunci:

tablet MUPS , flat face radius edge, concave, cup depth punch, disolusi

Abstrak

Pengempaan multi-unit pellet system (MUPS) menjadi tablet merupakan alternatif potensial untuk sediaan lepas lambat. Alat tabletasi (punch dan die) memengaruhi proses manufaktur dan kualitas tablet MUPS yang dihasilkan, terutama dalam melindungi pelet terhadap kerusakan. Penelitian ini bertujuan untuk mengetahui pengaruh desain punch, yakni bentuk dan ukuran cup depth punch terhadap mutu fisik dan profil pelepasan tablet MUPS metformin HCl. Bentuk punch yang diteliti adalah flat face radius edge (FFRE) dengan ukuran cup depth 0,36 mm dan 0,80 mm serta concave-faced (concave) dengan ukuran cup depth 2,00 mm dan 2,82 mm. Parameter pelepasan obat menggunakan nilai t50 menunjukkan bahwa jumlah obat yang terdisolusi dari tablet MUPS lebih cepat dibandingkan pelet metformin HCl lepas lambat yang tidak ditablet sebagai pembanding, serta kesamaan profil disolusi berdasarkan nilai f2 (similarity factor) <50. Tensile strength tablet yang diperoleh masih di bawah persyaratan (<1,7 MPa) dengan waktu hancur keseluruhan tablet kurang dari 2 menit. Dapat disimpulkan bahwa hasil uji pelepasan metformin HCl dari tablet MUPS menunjukkan adanya kerusakan pelet akibat proses tabletasi. Tabletasi pelet menggunakan punch FFRE dengan cup depth 0,80 mm pada tekanan kempa rendah menunjukkan adanya perlindungan yang lebih baik dibandingkan dengan cup depth 0,36 mm maupun juga punch bentuk concave.

Referensi

Edward MR and Schwartz JB. Oral Solid Dosage Forms. In: Felton LA. Remington the science and practice of pharmacy. 21st ed. Philadelphia: Lippincott Williams & Wilkins; 2005.

Shargel L and Yu ABC. Applied biopharmaceutics and pharmacokinetics. 7th ed. New York: McGraw Hill Education; 2016.

Chen T, Li J, Chen T, Sun CC, Zheng Y. Tablets of multi-unit pellet system for controlled drug delivery. J Control Release 2017 Sep 28:262:222-31. DOI: https://doi.org/10.1016/j.jconrel.2017.07.043

Torrado JJ and Augsburger LL. Tableting of muliparticulate modified release systems. In: Augsburger LL and Hoag SW. Pharmaceutical dosage forms: tablets volume 2: rational design and formulation. 3rd ed. New York: Informa Healthcare; 2008. DOI: https://doi.org/10.3109/9781420020298

Patel H and Gohel M. A Review on Development of Multifunctional Co Processed Excipient. J Crit Rev. 2016;3(2):48-54.

Anbalagan P, Sarkar S, Liew CV, Heng, PWS. Influence of the punch head design on the physical quality of tablets produced in a rotary press. J. Pharm. Sci. 2017;106(1):356-65. DOI: https://doi.org/10.1016/j.xphs.2016.10.016

Xu M, Heng P, Liew CV. Formulation and process strategies to minimize Coat damage for compaction of coated pellets in a rotary tablet press: a mechanistic view. Int. J. Pharm. 2016;499(1):29-37. DOI: https://doi.org/10.1016/j.ijpharm.2015.12.068

Lin X, Chyi CW, Ruan K, Feng Y, Heng P. Development of potential novel cushioning agents for the compaction of coated multi-particulates by co- processing micronized lactose with polymers. Eur J Pharm Biopharm. 2011;79(2):406-15. DOI: https://doi.org/10.1016/j.ejpb.2011.03.024

Heng PWS. Compaction of coated multi-particulates. Asian J Pharm Sci. 2016;11(1):1-2. DOI: https://doi.org/10.1016/j.ajps.2015.10.010

Desai MP, Anbalagan P, Koh CJN, Heng PWS. 2018. Evaluation of Tablet Punch Configuration on Mitigating Capping by a Quality by Design Approach. Drug Deliv Transl Res. 2018;8(6):1635-43. DOI: https://doi.org/10.1007/s13346-017-0425-0

Dugar RP, Sedlock R, Offenburger C, Dave RH. A mechanistic approach to model the compression cycle of different toolings based on compression roller interactions. AAPS PharmSciTech. 2019;20(1):1-24. DOI: https://doi.org/10.1208/s12249-018-1210-1

Kadiri MS, Michrafy A. 2013. The effect of punch’s shape on die compaction of pharmaceutical powders. Powder Technol. 2013;239:467-77. DOI: https://doi.org/10.1016/j.powtec.2013.02.022

Natoli D, Turner B. 2023. Taking shape. Accessed form https://natoli.com/app/uploads/2015/12/taking-shape.pdf on Feb, 4th 2023.

Natoli, D. 2014. Small changes to tablet shape bring big results. Int Pharm Ind. 2014;6(3):114-17. DOI: https://doi.org/10.7901/2169-3358-2014.1.114

Eiliazadeh B, Pitt K, Briscoe B. Effects of geometry on powder movement during pharmaceutical tabletting processes. Int J Solids Struct. 2004;41(21):5967-77. DOI: https://doi.org/10.1016/j.ijsolstr.2004.05.055

Natoli Engineering Company. Understanding the importance of punch length and cup depth. Whitepaper. 2020;1-6.

Chowhan ZT, Allen AA, Ong JTH. 1992. Punch geometry and formulation Considerations in reducing tablet friability and their effect on in vitro dissolution. J Pharm Sci. 1992;81(3):290-94. DOI: https://doi.org/10.1002/jps.2600810320

Yao T, Yamada M, Yamahara H, Yoshida M. Tableting of coated particles. II. Influence of particle size of pharmaceutical additives on protection of coating membrane from mechanical damage during compression process. Chem. Pharm. Bull. 1998;46(5):826-30. DOI: https://doi.org/10.1248/cpb.46.826

United States Pharmacopeia. (1217) Tablet Breaking Force. USP35/NF30. United States: United States Pharmacopeial Convention; 2012.

Kementrian Kesehatan Republik Indonesia. (1251) Uji Waktu Hancur. Farmakope Indonesia VI. 2020.

LeBlond D, Altan S, Novick S, Peterson J, Shen Y, Yang H. In vitro dissolution curve comparisons: a critique of current practice. Dissolution Technol. 2016;23(1):14-23. DOI: https://doi.org/10.14227/DT230116P14

Li X, Xu SD, Li M, Liu L, Heng P. Preparation of co-spray dried cushioning agent containing stearic acid for protecting pellet coatings when compressed. Drug Dev Ind Pharm. 2016;42(5):788-95. DOI: https://doi.org/10.3109/03639045.2015.1075034

Manufacturing Chemist. Reading and understanding vendor-supplied tablet drawings. 2020.https://www.manufacturingchemist.com/news/article_page/Reading_and_understanding_vendor-supplied_tablet_drawings/166080. Accessed: 25 June 2023.

Siow CRS, Heng PW, Chan LW. A study on the impact of HPMC viscosity grade and proportion on the functional properties of co-freeze-dried mannitol-HPMC cushioning excipients for compacted MUPS. Eur J Pharm Biopharm. 2020;151:98-107 DOI: https://doi.org/10.1016/j.ejpb.2020.04.001

Jarosz PJ, Parrott EL. Tensile strengths and hardness of tablets. J Pharm Sci. 1982;71(6):705-7. DOI: https://doi.org/10.1002/jps.2600710625

Pitt KG, Heasley MG. Determination of the tensile strength of elongated tablets.

Powder Technol. 2013;238:169-75. DOI: https://doi.org/10.1016/j.powtec.2011.12.060

Dave VS, Fahmy RM, Hoag SW. Investigation of the physical-mechanical properties of Eudragit(®) RS PO/RL PO and their mixtures with common pharmaceutical excipients. Drug Dev Ind Pharm. 2013;39(7):1113–25. DOI: https://doi.org/10.3109/03639045.2012.714786

Molavi F, Hamishehkar H, Nokhodchi A. Impact of tablet shape on dissolution rate through immediate released tablets. Adv Pharm Bull. 2020;10(4):656-61. DOI: https://doi.org/10.34172/apb.2020.079

Paul, S., & Tseng, Y. C. Insights into the role of tooling characteristics on compressibility evolution in non-flat faced tablets. Int J. Pharm. 2023;642:123156. DOI: https://doi.org/10.1016/j.ijpharm.2023.123156

Diterbitkan

14-12-2023

Unduhan

Data unduhan tidak tersedia.

Cara Mengutip

[1]
Pengaruh Desain Punch Terhadap Mutu Fisik dan Disolusi Tablet MUPS Metformin HCl. MEDICINUS 2023;36:36-47. https://doi.org/10.56951/af7svb90.