Neuroprotection in the Treatment of Glaucoma

Penulis

  • Astrianda Nadya Suryono Department of Ophthalmology, Faculty of Medicine, Universitas Indonesia

DOI:

https://doi.org/10.56951/medicinus.v36i2.119

Kata Kunci:

agen neuroproteksi, terapi glaukoma, kematian sel ganglion retina, glutamate, nitric oxide

Abstrak

Glaukoma adalah penyakit neurodegeneratif dengan karakteristik kerusakan progresif pada saraf optik, hilangnya sel ganglion pada retina beserta aksonnya, yang menyebabkan perubahan atau kehilangan lapang pandangan yang khas. Tingginya tekanan intraokular (TIO) merupakan faktor risiko utama untuk glaukoma. Beberapa penelitian mengatakan bahwa kematian sel ganglion retina masih terus berlanjut meskipun pasien sudah menggunakan obat untuk menurunkan TIO. Terapi utama glaukoma bertujuan untuk menurunkan TIO, namun saat ini penelitian tentang terapi neuroproteksi pada glaukoma sedang diminati karena efek dari terapi neuroproteksi yang dapat memperlambat bahkan mencegah kematian dari sel ganglion di retina. Produksi glutamate dan nitric oxide adalah salah satu faktor yang mengakibatkan kematian sel ganglion retina, dan agen neuroprotektif yang ditargetkan pada produksi glutamate dan nitric oxide dapat menjadi pilihan yang bermanfaat untuk mencegah kematian sel ganglion retina yang lebih progresif.

Referensi

Nucci C, Martucci A, Giannini C, Morrone LA, Bagetta G, Mancino R. Neuroprotective agents in the management of glaucoma. Eye 2018;32:938–45. DOI: https://doi.org/10.1038/s41433-018-0050-2

Kavitha S, Vishwaraj C, Venkatesh R, Shukla A, Chandran P, Tripathi S. Neuroprotection in glaucoma. Indian Journal of Ophthalmology 2022;70:380. DOI: https://doi.org/10.4103/ijo.IJO_1158_21

Sena DF, Lindsley K. Neuroprotection for treatment of glaucoma in adults. Cochrane Database Syst Rev. 2017; 2017(1):CD006539. DOI: https://doi.org/10.1002/14651858.CD006539.pub4

Quigley HA. The number of people with glaucoma worldwide in 2010 and 2020. British Journal of Ophthalmology 2006;90:262–7. DOI: https://doi.org/10.1136/bjo.2005.081224

Osborne NN, Chidlow G, Wood J, Casson R. Some current ideas on the pathogenesis and the role of neuroprotection in glaucomatous optic neuropathy. European Journal of Ophthalmology 2003;13:19–26. DOI: https://doi.org/10.1177/112067210301303S04

Pascolini D, Mariotti SP, Pokharel GP, Pararajasegaram R, Etya’ale D, Négrel A-D, Resnikoff S. 2002 Global update of available data on visual impairment: a compilation of population-based prevalence studies. Ophthalmic Epidemiology 2004;11:67–115. DOI: https://doi.org/10.1076/opep.11.2.67.28158

Tham Y-C, Li X, Wong TY, Quigley HA, Aung T, Cheng C-Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040. Ophthalmology 2014;121:2081–90. DOI: https://doi.org/10.1016/j.ophtha.2014.05.013

Cedrone C, Mancino R, Cerulli A, Cesareo M, Nucci C. Epidemiology of primary glaucoma: prevalence, incidence, and blinding effects. Progress in Brain Research 2008:3–14. DOI: https://doi.org/10.1016/S0079-6123(08)01101-1

Diekmann H, Fischer D. Glaucoma and optic nerve repair. Cell and Tissue Research 2017;353:327–37. DOI: https://doi.org/10.1007/s00441-013-1596-8

Gauthier A, Liu J. Neurodegeneration and neuroprotection in glaucoma. Neurodegeneration and Neuroprotection in Glaucoma 2016;89:73–9.

Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. American Journal of Ophthalmology 1998;126:487–97. DOI: https://doi.org/10.1016/S0002-9394(98)00223-2

Lichter P. Interim clinical outcomes in the collaborative initial glaucoma treatment study comparing initial treatment randomized to medications or surgery. Ophthalmology 2001;108:1943–53. DOI: https://doi.org/10.1016/S0161-6420(01)00873-9

Heijl A. Reduction of intraocular pressure and glaucoma progression. Archives of Ophthalmology 2002;120:1268. DOI: https://doi.org/10.1001/archopht.120.10.1268

Schwartz M, Yoles E. Neuroprotection: a new treatment modality for glaucoma? Current Opinion in Ophthalmology 2000;11:107–11. DOI: https://doi.org/10.1097/00055735-200004000-00007

Gupta S, Agarwal R, Agarwal P, Saxena R, Agrawal S. Current concepts in the pathophysiology of glaucoma. Indian Journal of Ophthalmology 2009;57:257. DOI: https://doi.org/10.4103/0301-4738.53049

Evans DW. Contrast sensitivity improves after brimonidine therapy in primary open angle glaucoma: a case for neuroprotection. British Journal of Ophthalmology 2003;87:1463–5. DOI: https://doi.org/10.1136/bjo.87.12.1463

Krupin T, Liebmann JM, Greenfield DS, Ritch R, Gardiner S. A randomized trial of brimonidine versus timolol in preserving visual function: Results From the Low-pressure Glaucoma Treatment Study. American Journal of Ophthalmology 2011;151:671–81. DOI: https://doi.org/10.1016/j.ajo.2010.09.026

Sit AJ, Weinreb RN, Crowston JG, Kripke DF, Liu JHK. Sustained Effect of Travoprost on Diurnal and Nocturnal Intraocular Pressure. American Journal of Ophthalmology 2006;141:1131–3. DOI: https://doi.org/10.1016/j.ajo.2006.01.049

Quaranta L, Pizzolante T, Riva I, Haidich A-B, Konstas AGP, Stewart WC. Twenty-four-hour intraocular pressure and blood pressure levels with bimatoprost versus latanoprost in patients with normal-tension glaucoma. British Journal of Ophthalmology 2008;92:1227–31. DOI: https://doi.org/10.1136/bjo.2008.138024

Wood JPM, Schmidt K-G, Melena J, Chidlow G, Allmeier H, Osborne NN. The β-adrenoceptor antagonists metipranolol and timolol are retinal neuroprotectants: comparison with betaxolol. Experimental Eye Research 2003;76:505–16. DOI: https://doi.org/10.1016/S0014-4835(02)00335-4

Osborne NN, Wood JPM, Chidlow G, Casson R, DeSantis L, Schmidt K-G. Effectiveness of levobetaxolol and timolol at blunting retinal ischaemia is related to their calcium and sodium blocking activities: relevance to glaucoma. Brain Research Bulletin 2004; 62:525–8. DOI: https://doi.org/10.1016/S0361-9230(03)00070-4

Shih GC, Calkins DJ. Secondary neuroprotective effects of hypotensive drugs and potential mechanisms of action. Expert Review of Ophthalmology 2012;7:161–75. DOI: https://doi.org/10.1586/eop.12.13

Tamaki Y, Araie M, Tomita K, Nagahara M. Effect of Topical Betaxolol on Tissue Circulation in the Human Optic Nerve Head. Journal of Ocular Pharmacology and Therapeutics 1999;15:313–21. DOI: https://doi.org/10.1089/jop.1999.15.313

Quaranta L, Turano R, Pizzolante T. Levobetaxolol hydrochloride: a review of its pharmacology and use in the treatment of chronic open-angle glaucoma and ocular hypertension. Clin Ophthalmol. 2007;1(2):93–7.

Okazawa H, Yamauchi H, Sugimoto K, Toyoda H, Kishibe Y, Takahashi M. Effects of Acetazolamide on Cerebral Blood Flow, Blood Volume, and Oxygen Metabolism: A Positron Emission Tomography Study with Healthy Volunteers. Journal of Cerebral Blood Flow & Metabolism 2001;21:1472–9. DOI: https://doi.org/10.1097/00004647-200112000-00012

Ding J, Yu J-Z, Li Q-Y, Wang X, Lu C-Z, Xiao B-G. Rho kinase inhibitor Fasudil induces neuroprotection and neurogenesis partially through astrocyte-derived G-CSF. Brain, Behavior, and Immunity 2009;23:1083–8. DOI: https://doi.org/10.1016/j.bbi.2009.05.002

Tanna AP, Johnson M. Rho Kinase Inhibitors as a Novel Treatment for Glaucoma and Ocular Hypertension. Ophthalmology 2018;125:1741–56. DOI: https://doi.org/10.1016/j.ophtha.2018.04.040

Ohta Y, Takaseki S, Yoshitomi T. Effects of ripasudil hydrochloride hydrate (K-115), a Rho-kinase inhibitor, on ocular blood flow and ciliary artery smooth muscle contraction in rabbits. Japanese Journal of Ophthalmology 2017;61:423–32. DOI: https://doi.org/10.1007/s10384-017-0524-y

Ishikawa M. Abnormalities in Glutamate Metabolism and Excitotoxicity in the Retinal Diseases. Scientifica 2013:1–13 DOI: https://doi.org/10.1155/2013/528940

Dreyer EB. Elevated Glutamate Levels in the Vitreous Body of Humans and Monkeys With Glaucoma. Archives of Ophthalmology 1996;114:299. DOI: https://doi.org/10.1001/archopht.1996.01100130295012

Lagrèze WA, Knörle R, Bach M, Feuerstein TJ. Memantine is neuroprotective in a rat model of pressure-induced retinal ischemia. Invest Ophthalmol Vis Sci. 1998;39(6):1063-6.

Hare WA, WoldeMussie E, Lai RK, Ton H, Ruiz G, Chun T, Wheeler L. Efficacy and Safety of Memantine Treatment for Reduction of Changes Associated with Experimental Glaucoma in Monkey. Invest Ophthalmol Vis Sci. 2004;45(8):2625-39. DOI: https://doi.org/10.1167/iovs.03-0566

Parisi V, Centofanti M, Ziccardi L, Tanga L, Michelessi M, Roberti G, Manni G. Treatment with citicoline eye drops enhances retinal function and neural conduction along the visual pathways in open angle glaucoma. Graefe’s Archive for Clinical and Experimental Ophthalmology 2015;253:1327–40. DOI: https://doi.org/10.1007/s00417-015-3044-9

Physiology of the Pineal Gland and Melatonin. Available in https://pubmed.ncbi.nlm.nih.gov/31841296/ accessed Aug 8, 2023.

Reiter RJ, Tan DX, Mayo JC, Sainz RM, Leon J, Czarnocki Z.Melatonin as an antioxidant: biochemical mechanisms and pathophysiological implications in humans. Acta Biochimica Polonica 2003;50(4):1129–46. DOI: https://doi.org/10.18388/abp.2003_3637

Martínez-Águila A, Fonseca B, Bergua A, Pintor J. Melatonin analogue agomelatine reduces rabbit’s intraocular pressure in normotensive and hypertensive conditions. European Journal of Pharmacology 2013;701:213–7. DOI: https://doi.org/10.1016/j.ejphar.2012.12.009

Pescosolido N, Gatto V, Stefanucci A, Rusciano D. Oral treatment with the melatonin agonist agomelatine lowers the intraocular pressure of glaucoma patients. Ophthalmic and Physiological Optics 2015;35:201–5. DOI: https://doi.org/10.1111/opo.12189

Araie M, Mayama C. Use of calcium channel blockers for glaucoma. Progress in Retinal and Eye Research 2011;30:54–71. DOI: https://doi.org/10.1016/j.preteyeres.2010.09.002

Diterbitkan

01-08-2023

Unduhan

Data unduhan tidak tersedia.

Cara Mengutip

[1]
Neuroprotection in the Treatment of Glaucoma. MEDICINUS 2023;36:3-8. https://doi.org/10.56951/medicinus.v36i2.119.