Terapi Sel Punca dan Tata Laksana Covid-19
DOI:
https://doi.org/10.56951/medicinus.v36i1.113Kata Kunci:
covid-19, sel punca, mesenchymal stem cellAbstrak
Covid-19 merupakan penyakit yang diidentifikasi untuk pertama kalinya di Wuhan, Tiongkok, di mana penyakit ini dapat merusak paru-paru, serta organ dan sistem organ lainnya seperti jantung serta sistem kekebalan tubuh manusia. Hingga saat ini belum terdapat pengobatan khusus untuk penyakit ini, namun para ilmuwan di Tiongkok telah melakukan banyak studi klinis terhadap terapi berbasis sel untuk pasien dengan Covid-19 dan penyakit pernapasan lainnya, terutama menggunakan sel punca (stroma) mesenkim atau mesenchymal stem (stromal) cells (MSC), dengan memanfaatkan media terkondisi yang diturunkan dari MSC atau MSC-derived conditioned media (CM) atau vesikel ekstraseluler dan beberapa tipe sel lainnya. Data praklinis terbaru dari model infeksi virus pernapasan dan studi klinis yang berkaitan dengan penggunaan MSC dengan cara mengubah ekspresi cytokine proinflamasi, dan membantu memperbaiki jaringan yang rusak pada penderita Covid-19. Metode penelitian ini menggunakan metode studi kasus deskriptif. Tujuan penelitian ini adalah untuk mengetahui efektivitas terapi dengan menggunakan sel punca atau mesenchymal stem cell (MSC) pada penatalaksanaan Covid-19. Hasil dari penelitian menunjukkan bahwa terdapat kemungkinan pemberian MSC alogenik dapat mempercepat langkah-langkah perbaikan jaringan di paru-paru dan mengurangi kebutuhan untuk aktivasi sel mesenkim lebih lanjut. Tanggapan positif pada subjek yang menerima pengobatan umbilical cord-derived mesenchymal stem cell (UC-MSC) menunjukkan adanya penurunan cytokine inflamasi, daripada perubahan viral load. Mahalnya biaya terapi sel membuat peneliti hanya bisa mengadakan studi klinis terbatas mengenai terapi sel untuk pasien Covid-19.
Unduhan
Referensi
Lu H, Stratton CW, Tang YW. Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. Journal of medical virolog, 2020 92(4):401. DOI: https://doi.org/10.1002/jmv.25678
Guo YR, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak–an update on the status. Military Medical Research 2020;7(1):1-10. DOI: https://doi.org/10.1186/s40779-020-00240-0
Lombardi AF, et al. Severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), influenza, and COVID-19, beyond the lungs: a review article. La radiologia medica 2020:1-9. DOI: https://doi.org/10.1007/s11547-020-01311-x
George PM, Wells AU, Jenkins RG. Pulmonary fibrosis and COVID-19: the potential role for antifibrotic therapy. The Lancet. Respiratory medicine 2020;8(8):807-15. DOI: https://doi.org/10.1016/S2213-2600(20)30225-3
Iba T, et al. Coagulopathy in COVID‐19. Journal of Thrombosis and Haemostasis 2020;18(9):2103-9. DOI: https://doi.org/10.1111/jth.14975
Bhavana V, et al. COVID-19: Pathophysiology, treatment options, nanotechnology approaches, and research agenda to combating the SARS-CoV2 pandemic. Life Sciences 2020:118336. DOI: https://doi.org/10.1016/j.lfs.2020.118336
WHO. Clinical management of severe acute respiratory infection (SARI) when COVID-19 disease is suspected: interim guidance, 13 March 2020. 2020, World Health Organization.
Khoury M, et al. Current status of cell-based therapies for respiratory virus infections: applicability to COVID-19. European respiratory journal 2020;55(6). DOI: https://doi.org/10.1183/13993003.00858-2020
Qomara WF, et al. Effectiveness of Remdesivir, Lopinavir/Ritonavir, and Favipiravir for COVID-19 Treatment: A Systematic Review. Int J Gen Med 2021;14:8557-71. DOI: https://doi.org/10.2147/IJGM.S332458
Sanders JM, et al. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review. Jama 2020;323(18):1824-36. DOI: https://doi.org/10.1001/jama.2020.6019
Hernandez AV, et al. Hydroxychloroquine or chloroquine for treatment or prophylaxis of COVID-19: a living systematic review. Annals of internal medicine 2020;173(4):287-96. DOI: https://doi.org/10.7326/M20-2496
Bordallo B, et al. Severe COVID-19: what have we learned with the immunopathogenesis? Advances in rheumatology 2020;60. DOI: https://doi.org/10.1186/s42358-020-00151-7
Rafiee Z, et al. Stem cell‐based and mesenchymal stem cell derivatives for coronavirus treatment. Biotechnology and Applied Biochemistry 2021. DOI: https://doi.org/10.1002/bab.2259
da Silva KN, et al. Is there a place for mesenchymal stromal cell-based therapies in the therapeutic armamentarium against COVID-19? Stem cell research & therapy 2021;12(1):1-24. DOI: https://doi.org/10.1186/s13287-021-02502-7
Ye Q, Wang B, Mao J. The pathogenesis and treatment of the `Cytokine Storm' in COVID-19. The Journal of infection 2020;80(6):607-13. DOI: https://doi.org/10.1016/j.jinf.2020.03.037
Shetty AK. Mesenchymal Stem Cell Infusion Shows Promise for Combating Coronavirus (COVID-19)- Induced Pneumonia. Aging Dis, 2020;11(2):462-4. DOI: https://doi.org/10.14336/AD.2020.0301
Al-Khawaga S and Abdelalim EM. Potential application of mesenchymal stem cells and their exosomes in lung injury: an emerging therapeutic option for COVID-19 patients. Stem Cell Research & Therapy 2020;11(1):437. DOI: https://doi.org/10.1186/s13287-020-01963-6
Aly RM. Current state of stem cell-based therapies: an overview. Stem cell investigation 2020;7:8-8. DOI: https://doi.org/10.21037/sci-2020-001
Mao AS and Mooney DJ. Mooney, Regenerative medicine: current therapies and future directions. Proceedings of the National Academy of Sciences 2015;112(47):14452-9. DOI: https://doi.org/10.1073/pnas.1508520112
Madl CM, Heilshorn SC, Blau HM. Bioengineering strategies to accelerate stem cell therapeutics. Nature 2018;557(7705):335-42. DOI: https://doi.org/10.1038/s41586-018-0089-z
Anurogo D, et al. Cell and Gene Therapy for Anemia: Hematopoietic Stem Cells and Gene Editing. International Journal of Molecular Sciences 2021;22(12):6275. DOI: https://doi.org/10.3390/ijms22126275
Ikrar T and Anurogo D. The Art of Oncoimmunovaccinomics. World Journal of Vaccines 2021;11(4):50-66. DOI: https://doi.org/10.4236/wjv.2021.114007
Larijani B, et al. Recent Advances of COVID-19 Modeling Based on Regenerative Medicine. Frontiers in Cell and Developmental Biology 2021;9. DOI: https://doi.org/10.3389/fcell.2021.683619
Pittenger MF, et al. Mesenchymal stem cell perspective: cell biology to clinical progress. npj Regenerative Medicine 2019;4(1):22. DOI: https://doi.org/10.1038/s41536-019-0083-6
Li S, et al. When stem cells meet COVID-19: recent advances, challenges and future perspectives. Stem Cell Research & Therapy 2022;13(1):9. DOI: https://doi.org/10.1186/s13287-021-02683-1
Golchin A, Seyedjafari E, Ardeshirylajimi A. Mesenchymal stem cell therapy for COVID-19: present or future. Stem cell reviews and reports 2020;16(3):427-33. DOI: https://doi.org/10.1007/s12015-020-09973-w
Andrzejewska A, Lukomska B, Janowski M. Concise review: mesenchymal stem cells: from roots to boost. Stem cells 2019;37(7):855-64. DOI: https://doi.org/10.1002/stem.3016
Dominici M, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006;8(4):315-7. DOI: https://doi.org/10.1080/14653240600855905
Zhao Q, Ren H, Han Z. Mesenchymal stem cells: Immunomodulatory capability and clinical potential in immune diseases. Journal of Cellular Immunotherapy, 2016;2(1):3-20. DOI: https://doi.org/10.1016/j.jocit.2014.12.001
Fan XL, et al. Mechanisms underlying the protective effects of mesenchymal stem cell-based therapy. CMLS 2020;77(14):2771-94. DOI: https://doi.org/10.1007/s00018-020-03454-6
Merimi M, et al. The Therapeutic Potential of Mesenchymal Stromal Cells for Regenerative Medicine: Current Knowledge and Future Understandings. Frontiers in Cell and Developmental Biology 2021;9. DOI: https://doi.org/10.3389/fcell.2021.661532
García-Bernal, D., et al., The Current Status of Mesenchymal Stromal Cells: Controversies, Unresolved Issues and Some Promising Solutions to Improve Their Therapeutic Efficacy. Frontiers in Cell and Developmental Biology, 2021. 9: p. 609. DOI: https://doi.org/10.3389/fcell.2021.650664
Quintero-Fabián, S., et al., Role of Matrix Metalloproteinases in Angiogenesis and Cancer. Frontiers in Oncology, 2019. 9. DOI: https://doi.org/10.3389/fonc.2019.01370
Ullah M, Liu DD, Thakor AS. Mesenchymal Stromal Cell Homing: Mechanisms and Strategies for Improvement. iScience, 2019;15:421-38. DOI: https://doi.org/10.1016/j.isci.2019.05.004
Gardin C, et al. Could Mesenchymal Stem Cell-Derived Exosomes Be a Therapeutic Option for Critically Ill COVID-19 Patients? Journal of clinical medicine 2020;9(9):2762. DOI: https://doi.org/10.3390/jcm9092762
Weiss ARR and Dalhke MH. Immunomodulation by Mesenchymal Stem Cells (MSCs): Mechanisms of Action of Living, Apoptotic, and Dead MSCs. Frontiers in Immunology 2019;10. DOI: https://doi.org/10.3389/fimmu.2019.01191
Krzyszczyk P, et al. The Role of Macrophages in Acute and Chronic Wound Healing and Interventions to Promote Pro-wound Healing Phenotypes. Frontiers in Physiology 2018;9. DOI: https://doi.org/10.3389/fphys.2018.00419
Saldaña L, et al. Immunoregulatory potential of mesenchymal stem cells following activation by macrophage-derived soluble factors. Stem Cell Research & Therapy 2019;10(1):58. DOI: https://doi.org/10.1186/s13287-019-1156-6
Song N, Scholtemeijer M, Shah K. Mesenchymal Stem Cell Immunomodulation: Mechanisms and Therapeutic Potential. Trends in pharmacological sciences 2020;41(9):653-64. DOI: https://doi.org/10.1016/j.tips.2020.06.009
Müller L, et al. Immunomodulatory Properties of Mesenchymal Stromal Cells: An Update. Frontiers in Cell and Developmental Biology 2021;9. DOI: https://doi.org/10.3389/fcell.2021.637725
Paul S and Lal G. The Molecular Mechanism of Natural Killer Cells Function and Its Importance in Cancer Immunotherapy. Frontiers in Immunology 2017;8. DOI: https://doi.org/10.3389/fimmu.2017.01124
Abel AM, et al. Natural Killer Cells: Development, Maturation, and Clinical Utilization. Frontiers in Immunology 2018;9. DOI: https://doi.org/10.3389/fimmu.2018.01869
Joel MDM, et al. MSC: immunoregulatory effects, roles on neutrophils and evolving clinical potentials. American journal of translational research 2019;11(6):3890-904.
Rawat S, Gupta S, Mohanty S. Mesenchymal stem cells modulate the immune system in developing therapeutic interventions. Immune Response Act. Immunomodul 2019. DOI: https://doi.org/10.5772/intechopen.80772
Noronha NDC, et al. Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies. Stem Cell Research & Therapy 2019;10(1):131. DOI: https://doi.org/10.1186/s13287-019-1224-y
Doyle LM, Wang MZ. Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells 2019;8(7):727. DOI: https://doi.org/10.3390/cells8070727
Park KS, et al. Enhancement of therapeutic potential of mesenchymal stem cell-derived extracellular vesicles. Stem Cell Research & Therapy 201910(1):288.
Joshi BS, et al. Endocytosis of extracellular vesicles and release of their cargo from endosomes. ACS nano 2020;14(4):4444-55. DOI: https://doi.org/10.1021/acsnano.9b10033
Gurunathan S, Kang MH, Kim JH. Diverse Effects of Exosomes on COVID-19: A Perspective of Progress From Transmission to Therapeutic Developments. Front Immunol 2021;12:716407. DOI: https://doi.org/10.3389/fimmu.2021.716407
Janockova J, et al. New therapeutic approaches of mesenchymal stem cells-derived exosomes. Journal of biomedical science 2021;28(1):39. DOI: https://doi.org/10.1186/s12929-021-00736-4
Yang E and Li MMH. All About the RNA: Interferon-Stimulated Genes That Interfere With Viral RNA Processes. Frontiers in Immunology 2020;11. DOI: https://doi.org/10.3389/fimmu.2020.605024
Zhao X, et al. IFITM Genes, Variants, and Their Roles in the Control and Pathogenesis of Viral Infections. Frontiers in Microbiology 2019;9. DOI: https://doi.org/10.3389/fmicb.2018.03228
Wu X, et al. Intrinsic Immunity Shapes Viral Resistance of Stem Cells. Cell 2018;172(3):423-38. DOI: https://doi.org/10.1016/j.cell.2017.11.018
Rajarshi K, Chatterjee A, Ray S. Combating COVID-19 with mesenchymal stem cell therapy. Biotechnology reports 2020;26:e00467. DOI: https://doi.org/10.1016/j.btre.2020.e00467
Zhu Y, et al. Transplantation of Mesenchymal Stem Cells: A Potential Adjuvant Therapy for COVID-19. Frontiers in Bioengineering and Biotechnology 2020;8. DOI: https://doi.org/10.3389/fbioe.2020.557652
Saleh FA and Ghazzawi J. Clinical update on the use of mesenchymal stem cells in COVID-19. American journal of translational research, 2021;13(11):12195-205.
Piechotta V, et al. Convalescent plasma or hyperimmune immunoglobulin for people with COVID-19: a living systematic review. Cochrane Database Syst Rev 2021;5(5):Cd013600. DOI: https://doi.org/10.1002/14651858.CD013600.pub4
Lanzoni G, et al., G., et al., Umbilical cord mesenchymal stem cells for COVID‐19 acute respiratory distress syndrome: A double‐blind, phase 1/2a, randomized controlled trial. Stem cells translational medicine 2021;10(5):660-73. DOI: https://doi.org/10.1002/sctm.20-0472
Rogers CJ, et al. Rationale for the clinical use of adipose-derived mesenchymal stem cells for COVID-19 patients. Journal of translational medicine 2020;18:1-19. DOI: https://doi.org/10.1186/s12967-020-02380-2
Zakrzewski W, et al. Stem cells: past, present, and future. Stem Cell Research & Therapy 2019;10(1):68. DOI: https://doi.org/10.1186/s13287-019-1165-5
Basiri A, et al. Stem Cell Therapy Potency in Personalizing Severe COVID-19 Treatment. Stem Cell Reviews and Reports 2021;17(1):193-213. DOI: https://doi.org/10.1007/s12015-020-10110-w
Astrin JJ and Betsou F. Trends in Biobanking: A Bibliometric Overview. Biopreserv Biobank 2016;14(1):65-74. DOI: https://doi.org/10.1089/bio.2015.0019
Harris DT. Biobanking and Regenerative Medicine: An Overview. Journal of clinical medicine 2018;7(6):131. DOI: https://doi.org/10.3390/jcm7060131
Unduhan
Terbitan
Bagian
Diterbitkan
Unduhan
Lisensi
Hak Cipta (c) 2023 Dito Anurogo, Zahradiva Putu Fitria Hermawan, Nur Rahmah Awaliah, Taruna Ikrar
Artikel ini berlisensi Creative Commons Attribution-NonCommercial 4.0 International License.