Pendekatan Multiperspektif dalam Manajemen Penyakit Asma
DOI:
https://doi.org/10.56951/medicinus.v35i3.108Kata Kunci:
asma, tata laksana, nanoteknologiAbstrak
Asma adalah suatu gangguan inflamasi kronis di saluran pernapasan. Tulisan ilmiah ini bertujuan untuk menjelaskan penyakit asma secara komprehensif, mencakup epidemiologi, etiologi, diet dan nutrisi, faktor genetik dan epigenetic, patofisiologi, penilaian kontrol asma, berikut tata laksana, serta tren perkembangan terapi pada masa yang akan datang seperti penggunaan nanoteknologi.
Unduhan
Referensi
Ong KY. What’s new in the Global Initiative for Asthma 2018 report and beyond. Allergo Journal International. 2019;28(2):63-72. DOI: https://doi.org/10.1007/s40629-018-0079-6
Louis R, Satia I, Ojanguren I, Schleich F, Bonini M, Tonia T, et al. European Respiratory Society guidelines for the diagnosis of asthma in adults. European Respiratory Journal. 2022;60(3):2101585. DOI: https://doi.org/10.1183/13993003.01585-2021
Heijink IH, Kuchibhotla VN, Roffel MP, Maes T, Knight DA, Sayers I, et al. Epithelial cell dysfunction, a major driver of asthma development. Allergy. 2020;75(8):1902-17. DOI: https://doi.org/10.1111/all.14421
Saglani S, Lloyd CM. Novel concepts in airway inflammation and remodelling in asthma. European Respiratory Journal. 2015;46(6):1796-804. DOI: https://doi.org/10.1183/13993003.01196-2014
Michaeloudes C, Abubakar-Waziri H, Lakhdar R, Raby K, Dixey P, Adcock IM, et al. Molecular mechanisms of oxidative stress in asthma. Molecular Aspects of Medicine. 2021:101026. DOI: https://doi.org/10.1016/j.mam.2021.101026
Ferrante G, La Grutta S. The burden of pediatric asthma. Frontiers in pediatrics. 2018;6:186. DOI: https://doi.org/10.3389/fped.2018.00186
Vos T, Lim SS, Abbafati C, Abbas KM, Abbasi M, Abbasifard M, et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet. 2020;396(10258):1204-22. DOI: https://doi.org/10.1016/S0140-6736(20)30925-9
Ren J, Xu J, Zhang P, Bao Y. Prevalence and risk factors of asthma in preschool children in Shanghai, China: A cross-sectional study. Frontiers in pediatrics. 2022;9:793452. DOI: https://doi.org/10.3389/fped.2021.793452
Rahimian N, Aghajanpour M, Jouybari L, Ataee P, Fathollahpour A, Lamuch-Deli N, et al. The Prevalence of Asthma among Iranian Children and Adolescent: A Systematic Review and Meta-Analysis. Oxidative Medicine and Cellular Longevity. 2021;2021. DOI: https://doi.org/10.1155/2021/6671870
Jackson DJ, Gern JE. Rhinovirus infections and their roles in asthma: etiology and exacerbations. The Journal of Allergy and Clinical Immunology: In Practice. 2022;10(3):673-81. DOI: https://doi.org/10.1016/j.jaip.2022.01.006
Kwong CG, Bacharier LB. Phenotypes of wheezing and asthma in preschool children. Current opinion in allergy and clinical immunology. 2019;19(2):148. DOI: https://doi.org/10.1097/ACI.0000000000000516
Vassilopoulou E, Guibas GV, Papadopoulos NG. Mediterranean-Type Diets as a Protective Factor for Asthma and Atopy. Nutrients. 2022;14(9):1825. DOI: https://doi.org/10.3390/nu14091825
Baïz N, Just J, Chastang J, Forhan A, de Lauzon-Guillain B, Magnier A-M, et al. Maternal diet before and during pregnancy and risk of asthma and allergic rhinitis in children. Allergy, Asthma & Clinical Immunology. 2019;15(1):1-10. DOI: https://doi.org/10.1186/s13223-019-0353-2
Shen SY, Xiao WQ, Lu JH, Yuan MY, He JR, Xia HM, et al. Early life vitamin D status and asthma and wheeze: a systematic review and meta-analysis. BMC pulmonary medicine. 2018;18(1):1-18. DOI: https://doi.org/10.1186/s12890-018-0679-4
Hernandez-Pacheco N, Pino-Yanes M, Flores C. Genomic predictors of asthma phenotypes and treatment response. Frontiers in pediatrics. 2019;7:6. DOI: https://doi.org/10.3389/fped.2019.00006
Schoettler N, Rodríguez E, Weidinger S, Ober C. Advances in asthma and allergic disease genetics: Is bigger always better? Journal of Allergy and Clinical Immunology. 2019;144(6):1495-506. DOI: https://doi.org/10.1016/j.jaci.2019.10.023
Ziani M, Henry AP, Hall IP. Association study between asthma and single nucleotide polymorphisms of ORMDL3, GSDMB, and IL1RL1 genes in an Algerian population. Egyptian Journal of Medical Human Genetics. 2021;22(1):1-7. DOI: https://doi.org/10.1186/s43042-021-00163-y
Morales E, Duffy D. Genetics and gene-environment interactions in childhood and adult onset asthma. Frontiers in pediatrics. 2019;7:499. DOI: https://doi.org/10.3389/fped.2019.00499
Kapitein B, Hoekstra MO, Nijhuis E, Hijnen D, Arets H, Kimpen J, et al. Gene expression in CD4+ T-cells reflects heterogeneity in infant wheezing phenotypes. European Respiratory Journal. 2008;32(5):1203-12. DOI: https://doi.org/10.1183/09031936.00020108
Klaassen EM, van de Kant KD, Jöbsis Q, van Schayck OC, Smolinska A, Dallinga JW, et al. Exhaled biomarkers and gene expression at preschool age improve asthma prediction at 6 years of age. American journal of respiratory and critical care medicine. 2015;191(2):201-7. DOI: https://doi.org/10.1164/rccm.201408-1537OC
Bush A. Pathophysiological mechanisms of asthma. Frontiers in pediatrics. 2019;7:68. DOI: https://doi.org/10.3389/fped.2019.00068
Brannan J, Lougheed MD. Airway Hyperresponsiveness in Asthma: Mechanisms, Clinical Significance, and Treatment. Frontiers in Physiology. 2012;3. DOI: https://doi.org/10.3389/fphys.2012.00460
Yang Z, Zhuang J, Zhao L, Gao X, Luo Z, Liu E, et al. Roles of Bronchopulmonary C-fibers in airway Hyperresponsiveness and airway remodeling induced by house dust mite. Respiratory Research. 2017;18(1):199. DOI: https://doi.org/10.1186/s12931-017-0677-8
Murphy RC, Lai Y, Nolin JD, Aguillon Prada RA, Chakrabarti A, Novotny MV, et al. Exercise-induced alterations in phospholipid hydrolysis, airway surfactant, and eicosanoids and their role in airway hyperresponsiveness in asthma. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2021;320(5):L705-L14. DOI: https://doi.org/10.1152/ajplung.00546.2020
Gans MD, Gavrilova T. Understanding the immunology of asthma: pathophysiology, biomarkers, and treatments for asthma endotypes. Paediatric Respiratory Reviews. 2020;36:118-27. DOI: https://doi.org/10.1016/j.prrv.2019.08.002
Papaioannou AI, Fouka E, Ntontsi P, Stratakos G, Papiris S. Paucigranulocytic Asthma: Potential Pathogenetic Mechanisms, Clinical Features and Therapeutic Management. Journal of Personalized Medicine. 2022;12(5):850. DOI: https://doi.org/10.3390/jpm12050850
Doeing DC, Solway J. Airway smooth muscle in the pathophysiology and treatment of asthma. Journal of applied physiology. 2013;114(7):834-43. DOI: https://doi.org/10.1152/japplphysiol.00950.2012
Simon D. Recent advances in clinical allergy and immunology. International archives of allergy and immunology. 2018;177(4):324-33. DOI: https://doi.org/10.1159/000494931
Fang L, Sun Q, Roth M. Immunologic and non-immunologic mechanisms leading to airway remodeling in asthma. International journal of molecular sciences. 2020;21(3):757. DOI: https://doi.org/10.3390/ijms21030757
Yang Y, Jia M, Ou Y, Adcock IM, Yao X. Mechanisms and biomarkers of airway epithelial cell damage in asthma: A review. The Clinical Respiratory Journal. 2021;15(10):1027-45. DOI: https://doi.org/10.1111/crj.13407
Rutting S, Thamrin C, Cross TJ, King GG, Tonga KO. Fixed Airflow Obstruction in Asthma: A Problem of the Whole Lung Not of Just the Airways. Frontiers in Physiology. 2022:949. DOI: https://doi.org/10.3389/fphys.2022.898208
Fehrenbach H, Wagner C, Wegmann M. Airway remodeling in asthma: what really matters. Cell and tissue research. 2017;367(3):551-69. DOI: https://doi.org/10.1007/s00441-016-2566-8
Hough KP, Curtiss ML, Blain TJ, Liu R-M, Trevor J, Deshane JS, et al. Airway remodeling in asthma. Frontiers in Medicine. 2020;7:191. DOI: https://doi.org/10.3389/fmed.2020.00191
Coale JA, Ambrosi A, Denault DL, Diallo SN. Pulmonary System. Clinical Medicine for Physician Assistants. 2022:123. DOI: https://doi.org/10.1891/9780826182432.0004
Nourian Dehkordi A, Mirahmadi Babaheydari F, Chehelgerdi M, Raeisi Dehkordi S. Skin tissue engineering: wound healing based on stem-cell-based therapeutic strategies. Stem Cell Research & Therapy. 2019;10(1):111. DOI: https://doi.org/10.1186/s13287-019-1212-2
Joseph C, Tatler AL. Pathobiology of Airway Remodeling in Asthma: The Emerging Role of Integrins. Journal of Asthma and Allergy. 2022;15:595-610. DOI: https://doi.org/10.2147/JAA.S267222
Cloonan SM, Kim K, Esteves P, Trian T, Barnes PJ. Mitochondrial dysfunction in lung ageing and disease. European Respiratory Review. 2020;29(157):200165. DOI: https://doi.org/10.1183/16000617.0165-2020
Delmotte P, Marin Mathieu N, Sieck GC. TNFα induces mitochondrial fragmentation and biogenesis in human airway smooth muscle. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2021;320(1):L137-51. DOI: https://doi.org/10.1152/ajplung.00305.2020
Zhou WC, Qu J, Xie SY, Sun Y, Yao HW. Mitochondrial dysfunction in chronic respiratory diseases: implications for the pathogenesis and potential therapeutics. Oxidative Medicine and Cellular Longevity. 2021;2021. DOI: https://doi.org/10.1155/2021/5188306
Eldridge L, Wagner EM. Angiogenesis in the lung. The Journal of physiology. 2019;597(4):1023-32. DOI: https://doi.org/10.1113/JP275860
Bajbouj K, Ramakrishnan RK, Hamid Q. Role of Matrix Metalloproteinases in Angiogenesis and Its Implications in Asthma. Journal of Immunology Research. 2021;2021. DOI: https://doi.org/10.1155/2021/6645072
Ding Z, Yu F, Sun Y, Jiao N, Shi L, Wan J, et al. ORMDL3 Promotes Angiogenesis in Chronic Asthma Through the ERK1/2/VEGF/MMP-9 Pathway. Front Pediatr. 2021;9:708555. DOI: https://doi.org/10.3389/fped.2021.708555
Kim EJ, Lee H, Lee Y-J, Sonn JK, Lim Y-B. Ionizing Radiation regulates vascular endothelial growth factor-A transcription in cultured human vascular endothelial cells via the PERK/eIF2α/ATF4 pathway. International Journal of Radiation Oncology* Biology* Physics. 2020;107(3):563-70. DOI: https://doi.org/10.1016/j.ijrobp.2020.03.003
Chen J, Miller M, Unno H, Rosenthal P, Sanderson MJ, Broide DH. Orosomucoid-like 3 (ORMDL3) upregulates airway smooth muscle proliferation, contraction, and Ca2+ oscillations in asthma. Journal of Allergy and Clinical Immunology. 2018;142(1):207-18. e6. DOI: https://doi.org/10.1016/j.jaci.2017.08.015
Reddel HK, Bacharier LB, Bateman ED, Brightling CE, Brusselle GG, Buhl R, et al. Global Initiative for Asthma Strategy 2021: Executive Summary and Rationale for Key Changes. Am J Respir Crit Care Med. 2022;205(1):17-35. DOI: https://doi.org/10.1164/rccm.202109-2205PP
Richards JC, Lynch D, Koelsch T, Dyer D. Imaging of asthma. Immunology and Allergy Clinics. 2016;36(3):529-45. DOI: https://doi.org/10.1016/j.iac.2016.03.005
Ullmann N, Mirra V, Di Marco A, Pavone M, Porcaro F, Negro V, et al. Asthma: differential diagnosis and comorbidities. Frontiers in pediatrics. 2018;6:276. DOI: https://doi.org/10.3389/fped.2018.00276
Reddel HK, Bacharier LB, Bateman ED, Brightling CE, Brusselle GG, Buhl R, et al. Global Initiative for Asthma Strategy 2021: executive summary and rationale for key changes. Eur Respir J. 2022;59(1). DOI: https://doi.org/10.1183/13993003.02730-2021
Cheng WC, Chen CH. Nanotechnology bring a new hope for asthmatics. Ann Transl Med. 2019;7(20):516. DOI: https://doi.org/10.21037/atm.2019.09.153
Xia W, Tao Z, Zhu B, Zhang W, Liu C, Chen S, et al. Targeted Delivery of Drugs and Genes Using Polymer Nanocarriers for Cancer Therapy. Int J Mol Sci. 2021;22(17):9118. DOI: https://doi.org/10.3390/ijms22179118
Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MdP, Acosta-Torres LS, et al. Nano based drug delivery systems: recent developments and future prospects. Journal of nanobiotechnology. 2018;16(1):1-33. DOI: https://doi.org/10.1186/s12951-018-0392-8
Fu X, Shi Y, Qi T, Qiu S, Huang Y, Zhao X, et al. Precise design strategies of nanomedicine for improving cancer therapeutic efficacy using subcellular targeting. Signal transduction and targeted therapy. 2020;5(1):1-15. DOI: https://doi.org/10.1038/s41392-020-00342-0
Lipworth BJ. Treatment of acute asthma. The Lancet. 1997;350:S18-23. DOI: https://doi.org/10.1016/S0140-6736(97)90032-5
He S, Gui J, Xiong K, Chen M, Gao H, Fu Y. A roadmap to pulmonary delivery strategies for the treatment of infectious lung diseases. Journal of Nanobiotechnology. 2022;20(1):1-22. DOI: https://doi.org/10.1186/s12951-022-01307-x
Patel R, Naqvi SA, Griffiths C, Bloom CI. Systemic adverse effects from inhaled corticosteroid use in asthma: a systematic review. BMJ Open Respir Res. 2020;7(1): e000756. DOI: https://doi.org/10.1136/bmjresp-2020-000756
Williams DM. Clinical pharmacology of corticosteroids. Respiratory care. 2018;63(6):655-70. DOI: https://doi.org/10.4187/respcare.06314
Wang L, Feng M, Li Q, Qiu C, Chen R. Advances in nanotechnology and asthma. Annals of translational medicine. 2019;7(8):180. DOI: https://doi.org/10.21037/atm.2019.04.62
Li X, Naeem A, Xiao S, Hu L, Zhang J, Zheng Q. Safety challenges and application strategies for the use of dendrimers in medicine. Pharmaceutics. 2022;14(6):1292. DOI: https://doi.org/10.3390/pharmaceutics14061292
Karthikeyan A, Senthil N, Min T. Nanocurcumin: A Promising Candidate for Therapeutic Applications. Front Pharmacol. 2020;11:487. DOI: https://doi.org/10.3389/fphar.2020.00487
Liu D, Long M, Gao L, Chen Y, Li F, Shi Y, et al. Nanomedicines Targeting Respiratory Injuries for Pulmonary Disease Management. Advanced Functional Materials. 2022;32(22):2112258. DOI: https://doi.org/10.1002/adfm.202112258
Ballester M, Jeanbart L, de Titta A, Nembrini C, Marsland BJ, Hubbell JA, et al. Nanoparticle conjugation enhances the immunomodulatory effects of intranasally delivered CpG in house dust mite-allergic mice. Sci Rep. 2015;5(1):14274. DOI: https://doi.org/10.1038/srep14274
Gamazo C, Pastor Y, Larrañeta E, Berzosa M, Irache JM, Donnelly RF. Understanding the basis of transcutaneous vaccine delivery. Therapeutic delivery. 2019;10(1):63-80. DOI: https://doi.org/10.4155/tde-2018-0054
Givens BE, Geary SM, Salem AK. Nanoparticle-based CpG-oligonucleotide therapy for treating allergic asthma. Immunotherapy. 2018;10(7):595-604. DOI: https://doi.org/10.2217/imt-2017-0142
Grozdanovic M, Laffey KG, Abdelkarim H, Hitchinson B, Harijith A, Moon H-G, et al. Novel peptide nanoparticle–biased antagonist of CCR3 blocks eosinophil recruitment and airway hyperresponsiveness. Journal of Allergy and Clinical Immunology. 2019;143(2):669-80. e12. DOI: https://doi.org/10.1016/j.jaci.2018.05.003
Roma-Rodrigues C, Rivas-García L, Baptista PV, Fernandes AR. Gene Therapy in Cancer Treatment: Why Go Nano? Pharmaceutics. 2020;12(3):233. DOI: https://doi.org/10.3390/pharmaceutics12030233
Ahmad A. Pharmacological Strategies and Recent Advancement in Nano-Drug Delivery for Targeting Asthma. Life. 2022;12(4):596. DOI: https://doi.org/10.3390/life12040596
Zhu X, Cui J, Yi L, Qin J, Tulake W, Teng F, et al. The role of T cells and macrophages in asthma pathogenesis: a new perspective on mutual crosstalk. Mediators of Inflammation. 2020;2020:7835284. DOI: https://doi.org/10.1155/2020/7835284
Trivedi M, Denton E. Asthma in Children and Adults-What Are the Differences and What Can They Tell us About Asthma? Front Pediatr. 2019;7:256. DOI: https://doi.org/10.3389/fped.2019.00256
Cevhertas L, Ogulur I, Maurer DJ, Burla D, Ding M, Jansen K, et al. Advances and recent developments in asthma in 2020. Allergy. 2020;75(12):3124-46. DOI: https://doi.org/10.1111/all.14607
O'Byrne P, Fabbri LM, Pavord ID, Papi A, Petruzzelli S, Lange P. Asthma progression and mortality: the role of inhaled corticosteroids. Eur Respir J. 2019;54(1):1900491. DOI: https://doi.org/10.1183/13993003.00491-2019
Unduhan
Terbitan
Bagian
Diterbitkan
Unduhan
Lisensi
Hak Cipta (c) 2022 Dito Anurogo
Artikel ini berlisensi Creative Commons Attribution-NonCommercial 4.0 International License.