Sistem Penghantaran Obat dengan Misel Polimer

Penulis

  • Alasen Sembiring Milala Fakultas Farmasi, Universitas Surabaya

DOI:

https://doi.org/10.56951/medicinus.v35i3.104

Kata Kunci:

misel polimer, obat, critical micelle concentration

Abstrak

Saat ini dapat dikatakan sebagai era nanoteknologi, karena teknologi ini digunakan hampir di segala bidang, termasuk bidang tekonologi farmasi yang mulai gencar mengembangkan sediaan farmasi dengan dengan sistem nano. Salah satu sistem nano tersebut berupa misel polimer, yang umumnya memiliki ukuran partikel di bawah 100 nm. Berdasarkan hasil riset, misel polimer terbukti mampu meningkatkan kelarutan serta bioavailabilitas obat yang bersifat hidrofobik. Terdapat beberapa metode pembuatan misel polimer yang masing-masing memiliki keunggulan dan kekurangan. Evaluasi yang dilakukan untuk mengkarakterisasi misel polimer di antaranya adalah penentuan critical micelle concentration (CMC), ukuran partikel, karakteristik permukaan, stabilitas, dan uji pelepasan. Walaupun sebagian besar riset misel polimer diaplikasikan dalam bidang onkologi dengan rute pemberian intravena, namun saat ini semakin banyak peneliti yang mengembangkan riset pengembangan obat untuk rute pemberian per oral. Dengan semakin banyak riset terkait penerapan teknologi misel polimer untuk obat per oral, diharapkan dapat mendorong uji klinik seperti yang dilakukan pada obat-obatan intravena.

Referensi

Ghezzi M, Pescina S, Padula C, Santi P, Del Favero E, Cantu L, et al. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. Journal of Controlled Release 2021;332:312–36. DOI: https://doi.org/10.1016/j.jconrel.2021.02.031

Domingues C, Alvarez-Lorenzo C, Concheiro A, Veiga F, Figueiras A. Nanotheranostic Pluronic-like polymeric micelles: shedding light into the dark shadows of tumors. Mol. Pharmaceutics 2019;16(12):4757–74. DOI: https://doi.org/10.1021/acs.molpharmaceut.9b00945

Attia ABE, Ong ZY, Hedrick JL, Lee PP, Ee PLR, Hammond PT, et al., Mixed micelles self-assembled from block copolymers for drug delivery. Curr. Opin. Colloid Interf. Sci. 2011;16(3):182-94. DOI: https://doi.org/10.1016/j.cocis.2010.10.003

Deepak P, Nagaich U, Sharma A, Gulati N, Chaudhary A. Polymeric micelles: Potential Drug Delivery Devices. Indonesian J. Pharm. 2013;24(4):222-37.

Reddy bpk, Yadav HKS, Nagesha DK, Raiziday A, Karim A. Polymeric Micelles as Novel Carriers for Poorly Soluble Drugs–A Review. J. Nanosci. Nanotechnol. 2015;15(6):4009-18. DOI: https://doi.org/10.1166/jnn.2015.9713

Zhu Y and Liao L. Applications of nanoparticles for anticancer drug delivery: a review. J. Nanosci. Nanotechnol. 2015;15(7):4753-73. DOI: https://doi.org/10.1166/jnn.2015.10298

Zhang J, Wu M, Yang J, Wu Q, Jin Z. Anionic poly (lactic acid)-polyurethane micelles as potential biodegradable drug delivery carriers. Colloids and Surfaces A: Physicochem. Eng. Aspects 2009;337(1-3):200-4. DOI: https://doi.org/10.1016/j.colsurfa.2008.12.025

Deshmukh AS, Chauhan PN, Noolvi MN, Chaturvedi K, Ganguly K, Shukla SS, et al. Polymeric micelles: Basic research to clinical practice. International Journal of Pharmaceutics 2017;532(1):249–68. DOI: https://doi.org/10.1016/j.ijpharm.2017.09.005

Munk P, Prochazka K, Tuzar Z, Webber SE. Exploiting polymer micelle technology. Chemtech. 1998;28(10):20-8.

Kabanov AV and Alakhov VY. Pluronic® block copolymers in drug delivery: from mi-cellar nanocontainers to biological response modifiers. Crit Rev Ther Drug Carrier Syst. 2002;19(1):1-72. DOI: https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v19.i1.10

Zweers MLT, Engbers GHM, Grijpma DW, Feijen J. Release of anti-restenosis drugs from poly(ethylene oxide)-poly(dl-lactic-co-glycolic acid) nanoparticles. J Control Release 2006;114(3):317-24. DOI: https://doi.org/10.1016/j.jconrel.2006.05.021

Peng D, Zhang X, Feng C, Lu G, Zhang S, Huang X. Synthesis and characterization of amphiphilic graft copolymers with hydrophilic poly (acrylic acid) backbone and hydrophobic poly(methyl methacrylate) side chains. Polymer 2007;48(18):5250-8. DOI: https://doi.org/10.1016/j.polymer.2007.07.005

Wang H, Xu F, Wang Y, Liu X, Jin Q, Ji J. pH-responsive and biodegradable polymeric micelles based on poly (-amino ester)-graft-phosphorylcholine for doxorubicin delivery. Polym. Chem. 2013; 4:3012-301 DOI: https://doi.org/10.1039/c3py00139c

Wang Z, Zheng L, Li C, Zhang D, Xiao y, Guan G, et al. A novel and simple procedure to synthesize chitosan-graft-polycaprolactone in an ionic liquid. Carbohydr. Polym. 2013;94(1): 505-10. DOI: https://doi.org/10.1016/j.carbpol.2013.01.090

Prabaharan M, Reis RL, Mano JF. Carboxymethyl chitosan-graft-phosphati- dylethanolamine: amphiphilic matrices for controlled drug delivery. React. Funct. Polym. 2007;67(1):43-52. DOI: https://doi.org/10.1016/j.reactfunctpolym.2006.09.001

Bajgai MP, Parajuli DC, Ko JA, Kang HK, Khil M, Kim HY. Carbohyd. Polym. 2009;78(4):833-40. DOI: https://doi.org/10.1016/j.carbpol.2009.07.009

Qiu LY and Bae YH. Self-assembled polyethylenimine-graft-poly(e-caprolactone) micelles as potential dual carriers of genes and anticancer drugs. Biomaterials. 2007;28(28):4132-42. DOI: https://doi.org/10.1016/j.biomaterials.2007.05.035

Gu J, Cheng WP, Hoskins C, Lin PKT, Zhao L, Zhu L, et al. Nano self-assemblies based on cholate grafted poly-L-lysine enhanced the solubility of sterol-like drugs. J Microencapsul. 2011;28(8):752-62. DOI: https://doi.org/10.3109/02652048.2011.615951

Thompson CJ, Ding C, Qu X, Yang Z, Uchedbu IF, Tetley L, et al. The effect of polymer architecture on the nano self-assemblies based on novel comb-shaped amphiphilic poly (allylamine). Colloid Polym. Sci. 2008; 286:1511-26. DOI: https://doi.org/10.1007/s00396-008-1925-8

Thompson CJ, Tetley L, Uchegbu IF, Cheng WP. The complexation between novel comb shaped amphiphilic polyallylamine and insulin-Towards oral insulin delivery. Int. J. Pharm. 2009;376(1-2):46-55. DOI: https://doi.org/10.1016/j.ijpharm.2009.04.014

Patel AM, Modi AJ, Patel GN. Intelligent polymeric micelles as novel carrier for delivery of most anticancer drugs and nucleic acids. Pharmacologia 2012;3(9):362-70. DOI: https://doi.org/10.5567/pharmacologia.2012.362.370

Yokoyama M. Polymeric micelles as a new drug carrier system and their required considerations for clinical trials. Expert Opin Drug Deliv. 2010;7(2):145-58. DOI: https://doi.org/10.1517/17425240903436479

Yoo HS and Park TG. Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA-PEG block copolymer. J Control Release 2001;70(1-2):63-70. DOI: https://doi.org/10.1016/S0168-3659(00)00340-0

Rapoport N. Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog. Polym. Sci. 2007;32(8-9):962-90. DOI: https://doi.org/10.1016/j.progpolymsci.2007.05.009

Fares AR, ElMeshad AN, Kassem MAA. Enhancement of dissolution and oral bioavailability of lacidipine via pluronic P123/F127 mixed polymeric micelles: formulation, optimization using central composite design and in vivo bioavailability study. Drug Deliv. 2018;25(1):132-42. DOI: https://doi.org/10.1080/10717544.2017.1419512

Kaur J, Mishra V, Singh SK, Gulati M, Kapoor B, Chellappan DK, et al. Harnessing amphiphilic polymeric micelles for diagnostic and therapeutic applications: Breakthroughs and bottlenecks. J Control Release. 2021; 334:64-95. DOI: https://doi.org/10.1016/j.jconrel.2021.04.014

Mourya VK, Inamdar N, Nawale RB, Kulthe SS. Polymeric Micelles: General Considerations and their Applications. Indian Journal of Pharmaceutical Research and Education 2011;45(2):128-38.

Kwon G, Naito M, Yokoyama M, Okano T, Sakurai Y, Kataoka K. Block copolymer micelles for drug delivery: loading and release of doxorubicin. J. Control. Release 1997;48(2):195–201. DOI: https://doi.org/10.1016/S0168-3659(97)00039-4

Almeida M, Magalhaes M, Veiga F, Figueras A. Poloxamers, poloxamines and polymeric micelles: Definition, structure and therapeutic applications in cancer. J Polym Res 2018;25(31):1-14. DOI: https://doi.org/10.1007/s10965-017-1426-x

Aliabadi HM and Lavasanifar A. Polymeric micelles for drug delivery. Expert Opin Drug Deliv. 2006;3(1):139-62. DOI: https://doi.org/10.1517/17425247.3.1.139

Rub MA, Azum N, Kumar D, Asiri AM, Marwani HM. Micellization and microstructural studies between amphiphilic drug ibuprofen with non-ionic surfactant in aqueous urea solution. J. Chem. Thermodyn. 2014; 74:91-102. DOI: https://doi.org/10.1016/j.jct.2014.01.005

Ray GB, Chakraborty I, Moulik SP. Pyrene absorption can be a convenient method for probing critical micellar concentration (cmc) and indexing micellar polarity. J. Colloid Interf. Sci. 2006;294(1):248-54. DOI: https://doi.org/10.1016/j.jcis.2005.07.006

Chakraborty T, Chakraborty I, Ghosh S. The methods of determination of critical micellar concentrations of the amphiphilic systems in aqueous medium. Arab. J. Chem. 2011;4(3):265-70. DOI: https://doi.org/10.1016/j.arabjc.2010.06.045

Ishida O, Maruyama K, Sasaki K, Iwatsuru M. Size-dependent extravasation and interstitial localization of polyethyleneglycol liposomes in solid tumor-bearing mice. Int J Pharm. 1999;190(1):49-56. DOI: https://doi.org/10.1016/S0378-5173(99)00256-2

Primard C, Rochereau N, Luciani E, Genin C, Delair T, Paul S, et al. Traffic of poly(lactic acid) nanoparticulate vaccine vehicle from intestinal mucus to sub-epithelial immune competent cells. Biomaterials 2010;31(23):6060-8. DOI: https://doi.org/10.1016/j.biomaterials.2010.04.021

Logie J, Owen SC, McLaughlin CK, Schoichet MS. PEG-Graft Density Controls Polymeric Nanoparticle Micelle Stability. Chem. Mater. 2014;26(9):2847–55. DOI: https://doi.org/10.1021/cm500448x

Zhu Y, Meng T, Tan Y, Yang X, Liu Y, Liu X, et al. Negative Surface Shielded Polymeric Micelles with Colloidal Stability for Intracellular Endosomal/Lysosomal Escape. Mol. Pharmaceutics 2018;15(11):5374–86. DOI: https://doi.org/10.1021/acs.molpharmaceut.8b00842

Honary S and Zahir. Effect of zeta potential on the properties of nano-drug delivery systems - a review (Part 2). Trop. J. Pharm. Res. 2013;12(2):265-73. DOI: https://doi.org/10.4314/tjpr.v12i2.20

Taipaleenmaki EM, Mouritzen SA, Schattling PS, Zhang Y, Standler B. Mucopenetrating Micelles with a PEG Corona. Nanoscale 2017;46(9):18438-48. DOI: https://doi.org/10.1039/C7NR06821B

Taipaleenmaki EM, Brodszkij E, Stadler B. Mucopenetrating Zwitterionic Micelles. ChemNanoMat 2020;6(5):744-50. DOI: https://doi.org/10.1002/cnma.202000050

Bandi SP, Kumbhar YS, Venuganti VVK. Effect of particle size and surface charge of nanoparticles in penetration through intestinal mucus barrier. J. Nanopart. Res. 2020;22(62):1-11. DOI: https://doi.org/10.1007/s11051-020-04785-y

Jubeh TT, Barenholz Y, Rubinstein A. Differential adhesion of normal and inflamed rat colonic mucosa by charged liposomes. Pharm Res. 2004;21(3):447-53. DOI: https://doi.org/10.1023/B:PHAM.0000019298.29561.cd

Harris DC. Applications of spectrophotometry. Quantitative Chemical Analysis, W. H. Freeman and Company, 8th edition. New York: W. H. Freeman and Company; 2010.p.419-44.

Morton SW, Zhao X, Quadir MA, Hammond PT. FRET-enabled biological characterization of polymeric micelles. Biomaterials 2014;35(11):3489–96. DOI: https://doi.org/10.1016/j.biomaterials.2014.01.027

Cai Z, Wang Y, Zhu L, Liu Z. Nanocarriers: a general strategy for enhancement of oral bioavailability of poorly absorbed or pre-systemically metabolized drugs. Curr Drug Metab. 2010;11(2):197-207. DOI: https://doi.org/10.2174/138920010791110836

Kataoka K, Kwon GS, Yokohama M, Okano, Sakurai Y. Block copolymer micelles as vehicles for drug delivery. J. Control. Release 1993; 24:119–32. DOI: https://doi.org/10.1016/0168-3659(93)90172-2

Cheng J, Teply BA, Sherifi I, Sung J, Luther G, Gu FX, et al. Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials. 2007;28(5):869-76. DOI: https://doi.org/10.1016/j.biomaterials.2006.09.047

Akbar MU, Zia KM, Nazir A, Iqbal J, Ejaz SA, Akash MSH. Pluronic-Based Mixed Polymeric Micelles Enhance the Therapeutic Potential of Curcumin. AAPS PharmSciTech. 2018;19(6):2719-39. DOI: https://doi.org/10.1208/s12249-018-1098-9

Francis MF, Cristea M, Winnik FM. Polymeric micelles for oral drug delivery: why and how. Pure Appl. Chem. 2004;76(7-8):1321-35. DOI: https://doi.org/10.1351/pac200476071321

Kang N and Leroux J. Triblock and star-block copolymers of N-(2-hydroxypropyl) methacrylamide or N-vinyl-2-pyrrolidone and d, llactide: synthesis and self-assembling properties in water. Polymer (Guildf). 2004;45(26):8967–80. DOI: https://doi.org/10.1016/j.polymer.2004.10.081

Zhang JX, Li XJ, Qiu LY, Li XH, Yan MQ, Jin Y, et al. Indomethacin-loaded polymeric nanocarriers based on amphiphilic polyphosphazenes with poly (N-isopropylacrylamide) and ethyl tryptophan as side groups: preparation, in vitro and in vivo evaluation. J Control Release 2006;116(3):322-9. DOI: https://doi.org/10.1016/j.jconrel.2006.09.013

Atanase LI. Micellar Drug Delivery Systems Based on Natural Biopolymers. Polymers (Basel). 2021;13(3):477. DOI: https://doi.org/10.3390/polym13030477

Letchford K, Liggins R, Burt H. Solubilization of hydrophobic drugs by methoxy poly(Ethylene Glycol)-blockpolycaprolactone diblock copolymer micelles: theoretical and experimental data and correlations. J Pharm Sci. 2008;97(3):1179-90. DOI: https://doi.org/10.1002/jps.21037

Gao J, Ming J, He B, Fan Y, Gu Z, Zhang X. Preparation and characterization of novel polymeric micelles for 9-nitro-20(S)-camptothecin delivery. Eur J Pharm Sci. 2008;34(2-3):85-93. DOI: https://doi.org/10.1016/j.ejps.2008.01.016

D’Souza S. A review of in vitro drug release test methods for nano-sized dosage forms. Adv. Pharm. 2014; 304757:1-12. DOI: https://doi.org/10.1155/2014/304757

Gupta V and Trivedi P. In vitro and in vivo characterization of pharmaceutical topical nanocarriers containing anticancer drugs for skin cancer treatment, in: A.M. Grumezescu (Ed.), Lipid Nanocarriers for Drug Targeting. William Andrew Publishing. 2018: 563-627. DOI: https://doi.org/10.1016/B978-0-12-813687-4.00015-3

Gaucher G, Satturwar P, Jones M, Furtos A, Leroux J. Polymeric micelles for oral drug delivery. Eur J Pharm Biopharm. 2010;76(2):147-58. DOI: https://doi.org/10.1016/j.ejpb.2010.06.007

Narvekar M, Xue HY, Eoh JY, Wong HL. Nanocarrier for poorly water- soluble anticancer drugs-barriers of translation and solutions. AAPS PharmSciTech 2014;15(4):822-33. DOI: https://doi.org/10.1208/s12249-014-0107-x

Kulthe SS, Inamdar, Choudari YM, Shirolikar SM, Borde LC, Mourya VK. Mixed micelle formation with hydrophobic and hydrophilic Pluronic block copolymers: implications for controlled and targeted drug delivery. Colloids Surf B Biointerfaces 2011;88(2):691-6. DOI: https://doi.org/10.1016/j.colsurfb.2011.08.002

Kabanov AV, Jordan R, Luxenhofer L. Polymeric delivery systems for active agents. Google Patents (2016).

Toscanini MA, Limeres MJ, Garrido AV, Cagel M, Bernabeu E, Moretton MA, et al. Polymeric micelles and nanomedicines: Shaping the future of next generation therapeutic strategies for infectious diseases. Journal of Drug Delivery Science and Technology 2021;66:102927. DOI: https://doi.org/10.1016/j.jddst.2021.102927

Kumar R, Sirvi A, Kaur S, Samal SK, Roy S, Sangamwar AT. Polymeric micelles based on amphiphilic oleic acid modified carboxymethyl chitosan for oral drug delivery of bcs class iv compound: Intestinal permeability and pharmacokinetic evaluation. European Journal of Pharmaceutical Sciences 2020;153(1):105466. DOI: https://doi.org/10.1016/j.ejps.2020.105466

Diterbitkan

01-12-2022

Unduhan

Data unduhan tidak tersedia.

Cara Mengutip

[1]
Sistem Penghantaran Obat dengan Misel Polimer. MEDICINUS 2022;35:20-31. https://doi.org/10.56951/medicinus.v35i3.104.