Sistem Penghantaran Obat dengan Misel Polimer
DOI:
https://doi.org/10.56951/medicinus.v35i3.104Kata Kunci:
misel polimer, obat, critical micelle concentrationAbstrak
Saat ini dapat dikatakan sebagai era nanoteknologi, karena teknologi ini digunakan hampir di segala bidang, termasuk bidang tekonologi farmasi yang mulai gencar mengembangkan sediaan farmasi dengan dengan sistem nano. Salah satu sistem nano tersebut berupa misel polimer, yang umumnya memiliki ukuran partikel di bawah 100 nm. Berdasarkan hasil riset, misel polimer terbukti mampu meningkatkan kelarutan serta bioavailabilitas obat yang bersifat hidrofobik. Terdapat beberapa metode pembuatan misel polimer yang masing-masing memiliki keunggulan dan kekurangan. Evaluasi yang dilakukan untuk mengkarakterisasi misel polimer di antaranya adalah penentuan critical micelle concentration (CMC), ukuran partikel, karakteristik permukaan, stabilitas, dan uji pelepasan. Walaupun sebagian besar riset misel polimer diaplikasikan dalam bidang onkologi dengan rute pemberian intravena, namun saat ini semakin banyak peneliti yang mengembangkan riset pengembangan obat untuk rute pemberian per oral. Dengan semakin banyak riset terkait penerapan teknologi misel polimer untuk obat per oral, diharapkan dapat mendorong uji klinik seperti yang dilakukan pada obat-obatan intravena.
Unduhan
Referensi
Ghezzi M, Pescina S, Padula C, Santi P, Del Favero E, Cantu L, et al. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. Journal of Controlled Release 2021;332:312–36. DOI: https://doi.org/10.1016/j.jconrel.2021.02.031
Domingues C, Alvarez-Lorenzo C, Concheiro A, Veiga F, Figueiras A. Nanotheranostic Pluronic-like polymeric micelles: shedding light into the dark shadows of tumors. Mol. Pharmaceutics 2019;16(12):4757–74. DOI: https://doi.org/10.1021/acs.molpharmaceut.9b00945
Attia ABE, Ong ZY, Hedrick JL, Lee PP, Ee PLR, Hammond PT, et al., Mixed micelles self-assembled from block copolymers for drug delivery. Curr. Opin. Colloid Interf. Sci. 2011;16(3):182-94. DOI: https://doi.org/10.1016/j.cocis.2010.10.003
Deepak P, Nagaich U, Sharma A, Gulati N, Chaudhary A. Polymeric micelles: Potential Drug Delivery Devices. Indonesian J. Pharm. 2013;24(4):222-37.
Reddy bpk, Yadav HKS, Nagesha DK, Raiziday A, Karim A. Polymeric Micelles as Novel Carriers for Poorly Soluble Drugs–A Review. J. Nanosci. Nanotechnol. 2015;15(6):4009-18. DOI: https://doi.org/10.1166/jnn.2015.9713
Zhu Y and Liao L. Applications of nanoparticles for anticancer drug delivery: a review. J. Nanosci. Nanotechnol. 2015;15(7):4753-73. DOI: https://doi.org/10.1166/jnn.2015.10298
Zhang J, Wu M, Yang J, Wu Q, Jin Z. Anionic poly (lactic acid)-polyurethane micelles as potential biodegradable drug delivery carriers. Colloids and Surfaces A: Physicochem. Eng. Aspects 2009;337(1-3):200-4. DOI: https://doi.org/10.1016/j.colsurfa.2008.12.025
Deshmukh AS, Chauhan PN, Noolvi MN, Chaturvedi K, Ganguly K, Shukla SS, et al. Polymeric micelles: Basic research to clinical practice. International Journal of Pharmaceutics 2017;532(1):249–68. DOI: https://doi.org/10.1016/j.ijpharm.2017.09.005
Munk P, Prochazka K, Tuzar Z, Webber SE. Exploiting polymer micelle technology. Chemtech. 1998;28(10):20-8.
Kabanov AV and Alakhov VY. Pluronic® block copolymers in drug delivery: from mi-cellar nanocontainers to biological response modifiers. Crit Rev Ther Drug Carrier Syst. 2002;19(1):1-72. DOI: https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v19.i1.10
Zweers MLT, Engbers GHM, Grijpma DW, Feijen J. Release of anti-restenosis drugs from poly(ethylene oxide)-poly(dl-lactic-co-glycolic acid) nanoparticles. J Control Release 2006;114(3):317-24. DOI: https://doi.org/10.1016/j.jconrel.2006.05.021
Peng D, Zhang X, Feng C, Lu G, Zhang S, Huang X. Synthesis and characterization of amphiphilic graft copolymers with hydrophilic poly (acrylic acid) backbone and hydrophobic poly(methyl methacrylate) side chains. Polymer 2007;48(18):5250-8. DOI: https://doi.org/10.1016/j.polymer.2007.07.005
Wang H, Xu F, Wang Y, Liu X, Jin Q, Ji J. pH-responsive and biodegradable polymeric micelles based on poly (-amino ester)-graft-phosphorylcholine for doxorubicin delivery. Polym. Chem. 2013; 4:3012-301 DOI: https://doi.org/10.1039/c3py00139c
Wang Z, Zheng L, Li C, Zhang D, Xiao y, Guan G, et al. A novel and simple procedure to synthesize chitosan-graft-polycaprolactone in an ionic liquid. Carbohydr. Polym. 2013;94(1): 505-10. DOI: https://doi.org/10.1016/j.carbpol.2013.01.090
Prabaharan M, Reis RL, Mano JF. Carboxymethyl chitosan-graft-phosphati- dylethanolamine: amphiphilic matrices for controlled drug delivery. React. Funct. Polym. 2007;67(1):43-52. DOI: https://doi.org/10.1016/j.reactfunctpolym.2006.09.001
Bajgai MP, Parajuli DC, Ko JA, Kang HK, Khil M, Kim HY. Carbohyd. Polym. 2009;78(4):833-40. DOI: https://doi.org/10.1016/j.carbpol.2009.07.009
Qiu LY and Bae YH. Self-assembled polyethylenimine-graft-poly(e-caprolactone) micelles as potential dual carriers of genes and anticancer drugs. Biomaterials. 2007;28(28):4132-42. DOI: https://doi.org/10.1016/j.biomaterials.2007.05.035
Gu J, Cheng WP, Hoskins C, Lin PKT, Zhao L, Zhu L, et al. Nano self-assemblies based on cholate grafted poly-L-lysine enhanced the solubility of sterol-like drugs. J Microencapsul. 2011;28(8):752-62. DOI: https://doi.org/10.3109/02652048.2011.615951
Thompson CJ, Ding C, Qu X, Yang Z, Uchedbu IF, Tetley L, et al. The effect of polymer architecture on the nano self-assemblies based on novel comb-shaped amphiphilic poly (allylamine). Colloid Polym. Sci. 2008; 286:1511-26. DOI: https://doi.org/10.1007/s00396-008-1925-8
Thompson CJ, Tetley L, Uchegbu IF, Cheng WP. The complexation between novel comb shaped amphiphilic polyallylamine and insulin-Towards oral insulin delivery. Int. J. Pharm. 2009;376(1-2):46-55. DOI: https://doi.org/10.1016/j.ijpharm.2009.04.014
Patel AM, Modi AJ, Patel GN. Intelligent polymeric micelles as novel carrier for delivery of most anticancer drugs and nucleic acids. Pharmacologia 2012;3(9):362-70. DOI: https://doi.org/10.5567/pharmacologia.2012.362.370
Yokoyama M. Polymeric micelles as a new drug carrier system and their required considerations for clinical trials. Expert Opin Drug Deliv. 2010;7(2):145-58. DOI: https://doi.org/10.1517/17425240903436479
Yoo HS and Park TG. Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA-PEG block copolymer. J Control Release 2001;70(1-2):63-70. DOI: https://doi.org/10.1016/S0168-3659(00)00340-0
Rapoport N. Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog. Polym. Sci. 2007;32(8-9):962-90. DOI: https://doi.org/10.1016/j.progpolymsci.2007.05.009
Fares AR, ElMeshad AN, Kassem MAA. Enhancement of dissolution and oral bioavailability of lacidipine via pluronic P123/F127 mixed polymeric micelles: formulation, optimization using central composite design and in vivo bioavailability study. Drug Deliv. 2018;25(1):132-42. DOI: https://doi.org/10.1080/10717544.2017.1419512
Kaur J, Mishra V, Singh SK, Gulati M, Kapoor B, Chellappan DK, et al. Harnessing amphiphilic polymeric micelles for diagnostic and therapeutic applications: Breakthroughs and bottlenecks. J Control Release. 2021; 334:64-95. DOI: https://doi.org/10.1016/j.jconrel.2021.04.014
Mourya VK, Inamdar N, Nawale RB, Kulthe SS. Polymeric Micelles: General Considerations and their Applications. Indian Journal of Pharmaceutical Research and Education 2011;45(2):128-38.
Kwon G, Naito M, Yokoyama M, Okano T, Sakurai Y, Kataoka K. Block copolymer micelles for drug delivery: loading and release of doxorubicin. J. Control. Release 1997;48(2):195–201. DOI: https://doi.org/10.1016/S0168-3659(97)00039-4
Almeida M, Magalhaes M, Veiga F, Figueras A. Poloxamers, poloxamines and polymeric micelles: Definition, structure and therapeutic applications in cancer. J Polym Res 2018;25(31):1-14. DOI: https://doi.org/10.1007/s10965-017-1426-x
Aliabadi HM and Lavasanifar A. Polymeric micelles for drug delivery. Expert Opin Drug Deliv. 2006;3(1):139-62. DOI: https://doi.org/10.1517/17425247.3.1.139
Rub MA, Azum N, Kumar D, Asiri AM, Marwani HM. Micellization and microstructural studies between amphiphilic drug ibuprofen with non-ionic surfactant in aqueous urea solution. J. Chem. Thermodyn. 2014; 74:91-102. DOI: https://doi.org/10.1016/j.jct.2014.01.005
Ray GB, Chakraborty I, Moulik SP. Pyrene absorption can be a convenient method for probing critical micellar concentration (cmc) and indexing micellar polarity. J. Colloid Interf. Sci. 2006;294(1):248-54. DOI: https://doi.org/10.1016/j.jcis.2005.07.006
Chakraborty T, Chakraborty I, Ghosh S. The methods of determination of critical micellar concentrations of the amphiphilic systems in aqueous medium. Arab. J. Chem. 2011;4(3):265-70. DOI: https://doi.org/10.1016/j.arabjc.2010.06.045
Ishida O, Maruyama K, Sasaki K, Iwatsuru M. Size-dependent extravasation and interstitial localization of polyethyleneglycol liposomes in solid tumor-bearing mice. Int J Pharm. 1999;190(1):49-56. DOI: https://doi.org/10.1016/S0378-5173(99)00256-2
Primard C, Rochereau N, Luciani E, Genin C, Delair T, Paul S, et al. Traffic of poly(lactic acid) nanoparticulate vaccine vehicle from intestinal mucus to sub-epithelial immune competent cells. Biomaterials 2010;31(23):6060-8. DOI: https://doi.org/10.1016/j.biomaterials.2010.04.021
Logie J, Owen SC, McLaughlin CK, Schoichet MS. PEG-Graft Density Controls Polymeric Nanoparticle Micelle Stability. Chem. Mater. 2014;26(9):2847–55. DOI: https://doi.org/10.1021/cm500448x
Zhu Y, Meng T, Tan Y, Yang X, Liu Y, Liu X, et al. Negative Surface Shielded Polymeric Micelles with Colloidal Stability for Intracellular Endosomal/Lysosomal Escape. Mol. Pharmaceutics 2018;15(11):5374–86. DOI: https://doi.org/10.1021/acs.molpharmaceut.8b00842
Honary S and Zahir. Effect of zeta potential on the properties of nano-drug delivery systems - a review (Part 2). Trop. J. Pharm. Res. 2013;12(2):265-73. DOI: https://doi.org/10.4314/tjpr.v12i2.20
Taipaleenmaki EM, Mouritzen SA, Schattling PS, Zhang Y, Standler B. Mucopenetrating Micelles with a PEG Corona. Nanoscale 2017;46(9):18438-48. DOI: https://doi.org/10.1039/C7NR06821B
Taipaleenmaki EM, Brodszkij E, Stadler B. Mucopenetrating Zwitterionic Micelles. ChemNanoMat 2020;6(5):744-50. DOI: https://doi.org/10.1002/cnma.202000050
Bandi SP, Kumbhar YS, Venuganti VVK. Effect of particle size and surface charge of nanoparticles in penetration through intestinal mucus barrier. J. Nanopart. Res. 2020;22(62):1-11. DOI: https://doi.org/10.1007/s11051-020-04785-y
Jubeh TT, Barenholz Y, Rubinstein A. Differential adhesion of normal and inflamed rat colonic mucosa by charged liposomes. Pharm Res. 2004;21(3):447-53. DOI: https://doi.org/10.1023/B:PHAM.0000019298.29561.cd
Harris DC. Applications of spectrophotometry. Quantitative Chemical Analysis, W. H. Freeman and Company, 8th edition. New York: W. H. Freeman and Company; 2010.p.419-44.
Morton SW, Zhao X, Quadir MA, Hammond PT. FRET-enabled biological characterization of polymeric micelles. Biomaterials 2014;35(11):3489–96. DOI: https://doi.org/10.1016/j.biomaterials.2014.01.027
Cai Z, Wang Y, Zhu L, Liu Z. Nanocarriers: a general strategy for enhancement of oral bioavailability of poorly absorbed or pre-systemically metabolized drugs. Curr Drug Metab. 2010;11(2):197-207. DOI: https://doi.org/10.2174/138920010791110836
Kataoka K, Kwon GS, Yokohama M, Okano, Sakurai Y. Block copolymer micelles as vehicles for drug delivery. J. Control. Release 1993; 24:119–32. DOI: https://doi.org/10.1016/0168-3659(93)90172-2
Cheng J, Teply BA, Sherifi I, Sung J, Luther G, Gu FX, et al. Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials. 2007;28(5):869-76. DOI: https://doi.org/10.1016/j.biomaterials.2006.09.047
Akbar MU, Zia KM, Nazir A, Iqbal J, Ejaz SA, Akash MSH. Pluronic-Based Mixed Polymeric Micelles Enhance the Therapeutic Potential of Curcumin. AAPS PharmSciTech. 2018;19(6):2719-39. DOI: https://doi.org/10.1208/s12249-018-1098-9
Francis MF, Cristea M, Winnik FM. Polymeric micelles for oral drug delivery: why and how. Pure Appl. Chem. 2004;76(7-8):1321-35. DOI: https://doi.org/10.1351/pac200476071321
Kang N and Leroux J. Triblock and star-block copolymers of N-(2-hydroxypropyl) methacrylamide or N-vinyl-2-pyrrolidone and d, llactide: synthesis and self-assembling properties in water. Polymer (Guildf). 2004;45(26):8967–80. DOI: https://doi.org/10.1016/j.polymer.2004.10.081
Zhang JX, Li XJ, Qiu LY, Li XH, Yan MQ, Jin Y, et al. Indomethacin-loaded polymeric nanocarriers based on amphiphilic polyphosphazenes with poly (N-isopropylacrylamide) and ethyl tryptophan as side groups: preparation, in vitro and in vivo evaluation. J Control Release 2006;116(3):322-9. DOI: https://doi.org/10.1016/j.jconrel.2006.09.013
Atanase LI. Micellar Drug Delivery Systems Based on Natural Biopolymers. Polymers (Basel). 2021;13(3):477. DOI: https://doi.org/10.3390/polym13030477
Letchford K, Liggins R, Burt H. Solubilization of hydrophobic drugs by methoxy poly(Ethylene Glycol)-blockpolycaprolactone diblock copolymer micelles: theoretical and experimental data and correlations. J Pharm Sci. 2008;97(3):1179-90. DOI: https://doi.org/10.1002/jps.21037
Gao J, Ming J, He B, Fan Y, Gu Z, Zhang X. Preparation and characterization of novel polymeric micelles for 9-nitro-20(S)-camptothecin delivery. Eur J Pharm Sci. 2008;34(2-3):85-93. DOI: https://doi.org/10.1016/j.ejps.2008.01.016
D’Souza S. A review of in vitro drug release test methods for nano-sized dosage forms. Adv. Pharm. 2014; 304757:1-12. DOI: https://doi.org/10.1155/2014/304757
Gupta V and Trivedi P. In vitro and in vivo characterization of pharmaceutical topical nanocarriers containing anticancer drugs for skin cancer treatment, in: A.M. Grumezescu (Ed.), Lipid Nanocarriers for Drug Targeting. William Andrew Publishing. 2018: 563-627. DOI: https://doi.org/10.1016/B978-0-12-813687-4.00015-3
Gaucher G, Satturwar P, Jones M, Furtos A, Leroux J. Polymeric micelles for oral drug delivery. Eur J Pharm Biopharm. 2010;76(2):147-58. DOI: https://doi.org/10.1016/j.ejpb.2010.06.007
Narvekar M, Xue HY, Eoh JY, Wong HL. Nanocarrier for poorly water- soluble anticancer drugs-barriers of translation and solutions. AAPS PharmSciTech 2014;15(4):822-33. DOI: https://doi.org/10.1208/s12249-014-0107-x
Kulthe SS, Inamdar, Choudari YM, Shirolikar SM, Borde LC, Mourya VK. Mixed micelle formation with hydrophobic and hydrophilic Pluronic block copolymers: implications for controlled and targeted drug delivery. Colloids Surf B Biointerfaces 2011;88(2):691-6. DOI: https://doi.org/10.1016/j.colsurfb.2011.08.002
Kabanov AV, Jordan R, Luxenhofer L. Polymeric delivery systems for active agents. Google Patents (2016).
Toscanini MA, Limeres MJ, Garrido AV, Cagel M, Bernabeu E, Moretton MA, et al. Polymeric micelles and nanomedicines: Shaping the future of next generation therapeutic strategies for infectious diseases. Journal of Drug Delivery Science and Technology 2021;66:102927. DOI: https://doi.org/10.1016/j.jddst.2021.102927
Kumar R, Sirvi A, Kaur S, Samal SK, Roy S, Sangamwar AT. Polymeric micelles based on amphiphilic oleic acid modified carboxymethyl chitosan for oral drug delivery of bcs class iv compound: Intestinal permeability and pharmacokinetic evaluation. European Journal of Pharmaceutical Sciences 2020;153(1):105466. DOI: https://doi.org/10.1016/j.ejps.2020.105466
Unduhan
Terbitan
Bagian
Diterbitkan
Unduhan
Lisensi
Hak Cipta (c) 2022 Alasen Sembiring Milala
Artikel ini berlisensi Creative Commons Attribution-NonCommercial 4.0 International License.